作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,教案是教学蓝图,可以有效提高教学效率。来参考自己需要的教案吧!本页是敬业的小编沧海红颜为大家找到的13篇北师版五年级数学上册教案,希望对大家有所启发。
教学目标:
1.通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际, 初步感知平移和旋转现象 。
2.通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向。竖直方向平移后的图形。
3.初步渗透变换的数学思想方法。
重点难点:
能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学方法:
1、创设情景,引发思维。
2、组织讨论,深化思维。
3、加强练习,发展思维。
预习作业:
1.概念
(1)钟表的指针在不停的转动,从3时到5时指针转动了多少度?请画图表示
(2)像这样,在平面内,将一个图形绕 旋转 ,这样的图形运动称为图形的旋转;
称为旋转中心; 称为旋转角
(3)如何找到旋转角?
2.性质
你能根据图形总结出旋转的性质吗?
3.画图研究
将三角形ABC完成以下旋转画图
(1)以B为中心,把这个三角形顺时针旋转60°
(2)以AC中点为中心,把这个三角形旋转180°
教学过程:
一、 导入
课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。
游乐园里各种游乐项目的运动变化相同吗?
在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。
而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。
今天我们就一起来学习“旋转”。
板书课题。
二、学习新课
1.生活中的平移。
平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。
说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。
你们想亲身体验一下平移吗?
2.生活中的旋转
你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)
旋转就是物体绕着某一个点或轴运动。
像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。
同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!
现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!
3.学习例题3
(1)与学生共同完成其中的一道题,余下的由学生独立完成。
(2)对于有错误的学生,在全班进行讲评。
4.学习例题4
(1) 引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。
(2)课件演示画图过程,并帮助学生订正。
三、课内练习
四、课后作业
你能根据他们不同的运动变化分分类吗?
在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。
全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?
“你见过哪些旋转现象?”先说给同桌听听,然后汇报。
起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?
先说一说画图的步骤,再来画图。
让学会先选择几个点,把位置定下来,再来画图。
1.第6页2题。
2.第9页4题、
通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际, 初步感知平移和旋转现象。
通过动手操作,使学生会在方格纸上画出一个简单图形旋转90°后的图形。
板书设计:
旋 转
平移和旋转都是物体或图形的位置变化。
平移就是物体沿直线移动。
旋转就是物体绕着某一个点或轴运动
设计说明
小数除法的内容分为两部分:小数除法的计算方法和用小数除法解决实际问题。小数除法和整数除法在计算方法上有内在的联系,因此,把整数除法与相应的小数除法对比复习,使学生在比较两者计算方法的联系和区别的基础上,进一步巩固小数除法的计算方法。复习解决问题时,要求学生结合具体情境,根据数量关系,综合运用小数除法的知识解决生活中的实际问题。
课前准备
教师准备 PPT课件
教学过程
⊙问题回顾,知识再现
1.交代复习内容,引导学生浏览教材的相关内容,梳理学过的知识。
师:这节课,我们一起来复习小数除法。(师板书课题:小数除法)
引导学生回顾下列内容:
(1)除数是整数的小数除法的计算方法。
(2)除数是小数的小数除法的计算方法。
(3)如何求商的近似值?理解循环小数的意义。
(4)小数四则混合运算的顺序是怎样的?
2.引导学生先浏览教材,梳理知识,再逐一回答以上的问题。
⊙分层练习,巩固提高
基本练习,巩固新知。
(1)课件出示:117÷36= 1.69÷26=
(2)师找两名学生板演,其他学生在练习本上做。
117÷36=3.25 1.69÷26=0.065
(3)学生独立计算。集体订正时,让学生说一说:除数是整数的小数除法,计算时应注意什么?师强调以上两道题的做法。
(4)课件出示:56.28÷0.67=
(5)学生独立计算。找一名学生板演,其他学生在练习本上做。集体订正时,让学生说一说:除数是小数的除法,计算时应注意什么?
设计意图:
在练习中回顾小数除法的知识,在总结的过程中,既梳理了小数除法的内容,又为下面的练习做好了准备。
⊙综合练习,深化应用
1.15.3÷11的商是( ),它是( )小数,循环节是( ),保留三位小数是( )。
2.在○里填上“>”“<”或“=”。
4.59÷4○4.59
9.5÷0.92○9.5
0÷18.2○0×18.2
71.4+0.999○71.4+1
1.54÷(1+0.01)○1.54
(4.05+4.5)÷2○4.05
3.先说出运算顺序,再计算。
(1)75.6÷13.5-(3.6+1.78)
(2)2.3+3.91÷(22-19.7)
(3)18-(1.4+1.25×2.4)
(4)[15.2+(8.4-4.5×0.8)]÷1.6
学生独立完成,指名板演。全班交流,根据出现的问题及时进行解决。
设计意图:
通过练习,巩固小数除法的计算方法,能正确熟练地计算。
教学目标:
1、使学生理解长方体和正方体表面积的含义,在理解的基础掌握长方体表面积的计算方法。
2、通过动手操作,合作交流。培养学生的观察能力、概括推理能力。发展学生的空间观念。
3、通过自主探究,发展学生的空间观念。调动学生学习的积极性,激发学习数学的兴趣。
教学重点:
建立表面积的概念和长方体表面积的计算方法。
教学难点:
找出长方体的长、宽、高和每一个面的长和宽之间的关系。
教学准备:
1、教具:长方体纸盒、长方体纸盒展开图,课件。
2、学具:长方体纸盒、剪刀。
教学过程:
一、游戏激趣 ,导入新课。
1、同学们,我们来玩个“猜谜语”游戏,猜对的同学可以获得奖品,请听题
(1)紫色树,紫色花,紫色花开结紫瓜,紫瓜柄上长小刺,紫瓜里面装芝麻。(打一种蔬菜)
(2)红公鸡,绿尾巴,脑袋埋在地底下。(打一种蔬菜)
2、大家的表现真出色,我还为同学们准备了一个大礼物,想将它送给这节课发言积极的同学,可是这个盒子不漂亮。现在我要用彩纸包装一下。(师动手包装)
你知道我用了多大的彩纸吗?解决这个问题,也就是要求长方体的什么?(长方体的表面积)看看长方体有几个面?是那几个面?(学生找出后,标出上、下、前、后、左、右面)重新摆放长方体,它的前面在哪里?在长方体的这几个面中,那些面的大小是相等的?这几个面的面积大小也就叫做什么?(长方体的表面积)板书课题
【设计意图:好的开头是成功的一半。因此在课始就设计小学生感兴趣的游戏活动,调动学生学习的热情。利用发奖品时,遇到的新问题引入新课。再现生活中的包装情景,使学生更能体会到长方体表面积计算在生活中的应用,也使表面积概念更直观,形象化。】
二、动手实践,探索新知。
(一)长方体表面积的意义。
1、请同学们拿出自己的长方体学具,想想刚才包装的是长方体的哪几个面里?什么叫长方体的表面积?标出“上”、“下”、“前”、“后”、“左”、“右”面。
2、观察每个面的长和宽与长方体的长、宽、高有什么关系?(同桌交流后,汇报交流)
(二)长方体表面积的计算方法。
1、动手操作、自主探究。
那么怎样计算你的长方体盒子的表面积哪?
请同学们在小组内通过量一量、剪一剪、拼一拼、摆一摆的方法,试试求出长方体的表面积,同时把讨论的结果写在记录单上(形式不限),看哪一小组想出的方法多。
(教师对学习困难的学生进行指导)
2、交流汇报、总结规律。
(1)哪一个小组到前面来汇报你们的研究成果?
学生汇报算式,引导观察,用什么方法计算表面积的?(对表达流畅,思维敏捷的进行鼓励)
(2)小结长方体表面积的计算方法,根据学生的'回答并板书。
分析这几种计算表面积的方法,为什么这样算?在这几种算法中你喜欢用哪一种?与同桌说一说。
【设计意图:学生是学习的主人,让学生经历知识的形成过程,自己构建知识。利用充足的时间,动手操作,探索、交流合作,发现规律,获得新知。】
3、即时反馈、巩固新知。
请同学们算一算,老师的这个礼品盒的表面积是多少?(独立思考后,小组内交流汇报)还有别的计算方法吗?你认为那种方法简便?
【设计意图:运用新知解决问题,初步体验数学的有用性,数学与生活的紧密联系。在多样化算法中,引导学生比较,并逐步理解各种算法的优缺点。在解决问题中自觉实现化算法】
(三)尝试探索正方体表面积的计算方法。
正方体的表面积应该如何计算?
讨论,指名反馈,得出正方体表面积的计算方法。
正方体的表面积=棱长×棱长×6,为什么要乘以6?
1、给棱长为0.8米的正方体木箱表面涂上油漆,涂油漆部分的面积是多少?(独立探索,再交流计算方法。)
如果正方体木箱没有盖,涂油漆部分的面积是多少?
【设计意图:通过计算正方体表面积,进一步理解表面积含义。通过变式练习,体会用数学解决实际问题时,要灵活运用。】
2、归纳小结。
计算长方体、正方体表面积的关键是什么?如何计算?
教学内容:
北师大版小学数学五年级上册。(教科书第82、83页。)
课标分析:
本节课的主要内容是使学生能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,发展学生的归纳与概括的能力,渗透数学建模的思想,从中感受数学文化的魅力。
教材分析:
本课的内容是独立成篇的,这节课与本单元的其它知识之间没有必然的前后联系,是一节相对独立的数学活动课。教材提供的学习内容对于五年级的学生来说比较容易。但本课知识虽然简单,却是帮助学生建立数学模型的好题材,即是让学生能在观察活动中,发现点阵中隐含的规律,又是让学生体会到图形与数的联系,发展学生归纳与概括能力,渗透数学建模思想。
学生分析:
1、学生的知识基础
五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深刻的认识。但是学生对利用图形研究数,寻找数和图形之间的联系,还有困难。学生对线围成的基本图形有深刻的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。
2、学生的能力基础
学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探索图形的规律。因此五年级学生具备一定的观察能力、抽象概括能力、逻辑推理能力等。然而小学生的思维特点是从具体形象思维逐步向抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经验的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。
教学目标:
1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。
2、培养学生推理、观察、归纳和概括能力。
3、感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。
教学重点:
探究发现点阵中的规律。
教学难点:
总结概括规律。
教学准备:
课件,五子棋,磁扣等。
教法学法:
1、教师教学方法:让学生独立或合作式探究规律,鼓励学生有自己的发现、有不同的发现。尽量减少教师的介入
2、学生学习方法:大胆让学生画一画、摆一摆、算一算,让学生多角度探究规律,充分感受美图美思
教学过程:
一、展示图片,引出课题
1、展示图片,(投影)今天老师给大家带来了几幅图片,请同学们欣赏。
师:这些图片有什么特点?
生:好像都是由点组成的。
师:是呀,不要小看了这样一个小小的点,点是几何图形中最基本的图形,许许多多的点按照一定的规律排列起来就构成了点阵。
早在20xx多年前,古希腊的数学家们就是从这样一个小小的点开始研究,并且发现了有许多个这样的点组成的点阵中许多有趣的规律。这节课,我们也来尝试研究点阵的规律。(板书课题——点阵中的规律)。
二、细心观察,探求规律
1、出示正方形点阵,探索正方形点阵的规律。
A、第一个规律。
师:(出示点阵),这就是他们当时研究过的一组点阵,请大家用数学的眼光仔细观察,思考这样两个问题:(出示思考题)(指名读)
(1)每个点阵可以看成什么图形?
(2)每个点阵中分别有多少个点?你是怎样观察出来的?
小组讨论,指名回答。
师:每个点阵可以看成什么图形?(正方形),同意吗?
生1:我认为第一个点阵不能看成一个正方形,是一个圆形。
师:其他同学也同意他的观点吗?
师:其实第一个点阵虽然只是一个点,但是我们可以把它看成边长是1的小正方形。是吗?
师:每个点阵中分别有多少个点?
生2:第一个点阵有1个点,第二个点阵有4个点,第三个点阵有9个点,第四个点阵有16个点。
师:你能说一说你是怎么得到每个点阵中点的个数的吗?你是怎样观察出来的?
生:我是通过数出每个点阵中点的个数得到的。
师:谁还有不同的方法?有没有更快一些的方法?
生:我是通过计算得到的。
师:能具体说一说是怎样通过计算得到的吗?
生:第一个点阵有1个点;第二个点阵横着看,每行有2个点,有2行,共有2×2=4个点;第三个点阵每行有3个点,有3行,共有3×3=9个点;第4个点阵每行有4个点,有4行,共有4×4=16个点。
师:同学们现在你们发现正方形点阵的规律了吗?点阵的序号与它的点的个数算式有没有关系?有什么关系?如果用字母n来表示点阵的序号,那么正方形点阵点的个数是多少呢?
生:我们分析了前面几个点阵图的特� 也就是说:“是第几个点阵,就用几乘几”(板书)
师:如果一个点阵它有81个点,它应该是第几个点阵?每行有几个点?每列有几个点?
(这个画点阵的过程虽然简单,但体现了由数——形的转换。培养了学生主动进行数形转换的意识。)
B、第2个规律
师:刚才我们是怎样观察的?(横着数和竖着数)
正方形点阵还有没有其它的观察方法呢?能不能换个角度观察?
“斜着看又可以得到什么新的与序号有关的算式呢?请同学们独立思考,写出算式,然后汇报。”(投影)
观察并思考
(1)分别用算式表示每个点阵点的个数。
(2)你发现了什么规律?
学生汇报,教师板书
第1个:1=1
第2个:1+2+1=4
第3个:1+2+3+2+1=9
第4个:1+2+3+4+3+2+1=16
第N个:1+2+3+N++3+2+1
师:“谁发现什么规律呢?”
生:“如第2个点阵就从1加到2再加回来,第3个点阵就从1加到3再加回来,第4个点阵就从1加到4再加回来”。
师小结:“第几个点阵就从1连续加到几,再反过来加回到1”这个规律。
刚才是横竖数,“第几个点阵就是几乘几”。
C、第3个规律
师:刚才同学们发现了点阵中的两个规律,这些点阵中还有其它的规律吗?还能换个角度去思考吗?(出示教材第82页第(3)题图),老师把第5个点阵中的点用五条折线划分,这样划分后,看看你又有什么新发现呢?
师:我们把第1个折现内的点看成第一个点阵,该用什么算式表示?其他呢?小组讨论,列出算式,全班汇报。
小组代表汇报。
生:(总结)每用折线画一次后,点阵中的个数是
1=1 1+3=4 1+3+5=9 1+3+5+7=16
师:(总结)这样划分后,点阵中的规律是:1,1+3,1+3+5,1+3+5+7,
师:第1个点阵是1,第2个点阵是在第1个的基础上多3个,第3个点阵呢? 有的学生可能说:“这次都是奇数相加。”
教师问:“从奇数几加起?加几个?是随意的几个奇数相加吗?”
通过这样的提问,引导学生说出“第几个点阵就从1开始加几个连续奇数”。
师:真了不起。这种划分方法,我们可以叫做“折线划分法”。
第几个点阵,就是从1开始加几个连续奇数。
通过研究点阵,我们发现这组正方形点阵中有很多规律。这3种规律是从不同的角度观察出来的,无论你从什么角度去观察,得到的结论都与它的序号有关系,所以我们以后再研究点阵的时候,都要想一想跟它的序号有什么关系,这样才能更简单。
(在这里,教师不是让学生发现规律就结束了,而是让学生活学活用这些规律。让学生体会到我们刚才发现的正方形点阵中的规律,其实就是一个完全平方数的规律,它可以应用到所有的完全平方数。)
刚才这3种方法,哪一种更简便?你更喜欢哪一种?那么我们再研究正方形点阵的时候,用哪一种更简便?但点阵是丰富的,多变的,不仅只有正方形点阵,还有其他图形的点阵。这时,我们就需要开拓自己的思维,多想一些方法来研究它们与序号之间的关系。有没有兴趣再研究其他图形的点阵?
(在刚才的新课教学的环节中,学生经历了观察、思考、合作、交流、表达等过程,培养了观察能力、想象能力、概括能力。并深刻体验到数与形,数与式,式与式之间的联系,培养学生利用数形结合的思想来解决问题的意识和能力。)
三、牛刀小试
1、 (课件出示教材第83页试一试第1题)师:你们能用刚学过的几种方法中发现这个点阵的规律吗?
生:竖排×横排:1×2,2×3,3×4,4×5 师:与它们的序号有什么关系?都是序号和它后面相邻的两个自然数的乘积。在点子图上画出第5个点阵。
小组交流,研究:上面的点阵还有其他的规律吗?
生:(1)两个两个数:1×2,3×2,6×2,10×2,15×2 (2)斜着一层一层数:1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1 2.师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵,我们研究他们,同样会有很大的收获。看看,这是一组什么形状的点阵?(课件出示试一试第2题三角形点阵图)你能用一层一层数的方法,表示你发现的规律吗?展示,根据你发现的规律画出第五个点阵。
生;1,1+2,1+2+3,1+2+3+4
师:其他同学看明白了吗?有什么规律?(第几个点阵,就从1加到几。)
上面的点阵还有其他的规律吗?学生思考,指名说。(投影显示)
四、兴趣优在:(课件出示教材第83页练一练)
第2题:按规律画出下一个图形。
师:这道题就象梅花桩,指第一个,走了几个梅花桩?
生:3个。
师:指第二个,共走了几个梅花,增加几个桩?
生:7个,增加了4个。
师:指第三个,共走了几个梅花桩,又增加了几个桩?
生:13个,又增加了6个。
师:如果再往下走,你们想想会再多走几个桩,你能写出算式吗?写完算式,学生自己独立画出点阵。小组合作,讨论点阵中蕴涵的规律,然后汇报交流。
生:交流,探索总结规律
(这一题与前几个题区别很大,前几题的点阵可以看作规则的几何图形,这一题点阵图不规则,要画出下一个图形,既要抓住数量的变化,又要抓住形状的变化。进一步体会到数形结合的重要。)
五、知识拓展
欣赏生活中的点阵图片。思考:生活中有哪些地方运用点阵的知识?(座位、站排做操、楼房的窗子等。
师:点阵不只是点,很多有规律的排列,都可以看成点阵。
投影跳棋、围棋、十字绣、花坛里的鲜花、水晶灯等图片。
六、课堂小结
师:同学们今天学习了这么多的点阵,有没有收获,哪些收获?
七、课后操作
自创新的点阵图,并说出点阵规律。
看图找关系是北师大教材五年级上册第三单元数学与交通中的内容。这个内容是新课标的新增内容,主要让学生看懂一些表示数量关系的图表,并根据图中有关信息分析量与量之间的关系,能按要求看图回答问题,有利于培养学生的代数思想和函数思想,教学重点是认识图表,并从图表中获取信息。
在教学设计的时候,我主要考虑的问题是如何把车速与时间的关系、距离与时间的关系、楼层与时间的关系等零散的图表串连起来,创设合理的情境,并让学生将图表中的信息描述出来,以提出问题、自主探索、独立思考与合作交流相�
教学的重点是从纵轴和横轴所表示的意义来认识图表,并从图表中获取信息。本节课的知识学生掌握并不难,为了改变课堂的一问一答,让更多的学生参与学习,因此,在课程设计时不能仅仅呈现一幅图,让学生回答你了解了哪些信息,每个数表示什么?还应利用了学生已有的生活经验和知识基础,赋予数学图表以生命,让学生在图表中寻找生活原形的同时,亲身参与活动,用数学语言将生活情境进行再现和表述,以达到认识图表、了解图表的目的。因此,在呈现了时间和速度的关系图后,我通过你能在图中找到加速和减速的感觉吗?这个问题激起学生兴趣,学生结合生活经验,根据自己的理解描述图表中是怎样体现加速和减速的。在这个过程中,我再根据学生的描述指导学生理解横、纵坐标表示的意义,图表中折线往上画,说明速度提高;折线往下画,说明速度降低;折线画成水平,说明速度不变。
在这节课能否让学生动笔来画一画图表?教材虽然没有要求,但是如果从培养学生的思维角度入手,我们是否可以让学生自己来画一画图表呢?所以我设计的课外作业是:请你根据生活中的情境,绘制一幅图表。让学生自己设计图表来规划和跟踪学习和生活,最终实现了人人学有价值的数学。
当然,在教学中还是有以下几点不足之处。
1、虽然在呈现了时间与速度关系图之后,已经引导学生认识了横轴、纵轴和折线的含义,后面的几幅图表学生也能描述出其所表达的数学信息,但如果让学生再说说每幅图分别表示是哪个量和量之间的关系就更好了。
2、部分学生思路清晰,思维活跃;相反,部分学生始终没有回答准确,两极分化较为严重。
教学目标:
1.通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。
2.欣赏美丽的对称图形,并能自身设计图案。
3.同学感受图形的美,进而培养同学的空间想象能力和审美意识。
重点难点:
1.能利用对称、平移、旋转等方法绘制精美的图案。
2.感受图形的内在美,培养同学的审美情趣。
教学准备:
幻灯片、课件。
教学过程
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让同学尽情发表自身的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2.上面哪幅图是对称的?先让同学边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、安排作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1 图案2
图案3 图案4
对称、平移和旋转知识有广泛的应用。
教学目标:
1.理解分数、小数相互转化的必要性。
2.能正确地将简单分数、有限小数相互转化。
3.使学生掌握分数化小数的一般方法,掌握最简分数化成有限小数的规律,培养学生观察、比较、判断。归纳的思维能力。
重点难点:
掌握最简分数化成有限小数的规律。
教具准备:
多媒体课件和题卡。
教学过程
一。 导入新课
1.复习。
(1)说说下面小数的意义:
0.2表示( )分之( ),0.75和0.625呢?
(2)把下面的分数化成小数,并说出方法。
1/10 3/100 51/1000
2、激趣引入。
同学们,你们每天都看课外书吗?每天看课外书的时间是多少?(学生自由说,汇报交流。)
这节课,我们就来研究一下看课外书的时间能给我们带来哪些数学问题。(板书:看课外书时间)
二、探究新知
1、课件出示主题图。
下面我们来了解林林和明明每天的看课外书时间。
2、观察主题图,理解图意。
请同学们仔细观察图表,从中你得到了哪些数学信息?(板书:林林0.4时 明明1/4时)
3、提出问题,进行估计。
请同学们估一估,谁用的时间多一些?(板书:谁用的时间多一些?) (估计汇报并说明道理。)
4、解决问题的探索。
同学们有的说林林的多,有的说明明的多,怎样才能精确的比较出谁用的时间多呢?
(1)自主探索。请同学们独立思考并记录下解决过程,你用了什么样的方法进行比较。
(2)合作交流。和小组的同学交流一下自己的比较方法。
(3)全班汇报。哪个小组先来汇报你们的比较方法?(根据学生的汇报,教师进行板书。)
5、课件展示课本中呈现的方法。
老师用课件展示课本上给我们呈现的方法,看不清的请看课本上相应的图。注意对照你们探索出来的方法,哪些方法是与你们相似的,哪些方法是没有想到的。(每展示一幅图时指名学生说说比较的方法)
6、讨论并归纳分数、小数的互化方法。
<1>分数化成小数
(1)做课本上的试一试第2题。(独立练习)
(2)请同学们讨论并归纳出分数化成小数的基本方法是什么?(小组讨论全班汇报课件展示)
<2> 小数化成分数
(1)做课本上的试一试第1题。(独立练习集体订正,教师板书)
(2)请同学们讨论并归纳出小数化成分数的基本方法是什么?(小组讨论全班汇报课件展示)
三、巩固练习
1、把下面的分数化成小数,把小数化成分数。(课件出示练习题)
17/20 7/8 14/ 25 0.57 1.23 7.4
2、比较下面数的大小。(课件出示练习题)
2/3 , 0.67 , 5/8
3. 把3/4 5/14 13/40 5/6化成小数,你发现了什么?
怎样解决?
(1)引导学生观察:每个分数所化成的小数,是什么样的小数?每个分数的分母与这个分数所化成的小数有什么联系?
(2)学生把每个分数的分母分解质因数。
(3)观察质因数,启发学生想一想:什么样的分数能化成有限小数?什么样的分数不能化成有限小数?
(4)引导学生概括。
四、课堂小结
1、通过这节课的学习你有哪些收获?(分数、小数的互化)
2、进行分数、小数的互化时有什么要注意的?(如,分数化成小数除不尽时,要;小数化成分数不是最简分数时,要)
五、实践活动
请同学们在自己周围寻找用分数或小数表示的信息,将寻找到的信息与同学进行交流。
教学目标:使学生进一步理解分数与除法的关系,学会根据分数与除法的关系,把低级单位的名数改写成高级单位的名数以及解答"求一个数是另一个数的几分之几"的应用题。
教学重点:名数之间的互化。
教学难点:名数之间的互化的实质理解。
教学课型:新授课
教具准备:课件
教学过程:
一,铺垫复习,导入新知
1,用分数表示下面各式的商。[课件1]
5÷6 14÷25 12÷12 18÷35
2,在括号里填上适当的数或字母。[课件2]
12÷35=( )/( ) ( )÷( )=4/7
( )÷( )=a/b 8÷( )=( )/9
( )÷17=7/( ) 1÷( )=( )/d
3,把5个饼分给9孩子吃,每个孩子分得多少个[课件3]
4,小新家养鸡30只,养鸭10只。养的鸡是鸭的几倍
5,填空。[课件4]
30分米=( )米180分=( )小时
二,变式类推,深化理解
1,教学P91 。例4: (1)3分米是几分之几米
(2)17分是几分之几时
思考:A,这两题与复习题有什么区别有什么相同
B,第(1)题要把分米数改写成米数应该怎么办怎样计算
板书: 3÷10=3/10(米)
C,第(2)小题是要将什么改写成什么怎样求得
板书: 17÷60=17/60(时)
※ P91 。做一做
2,教学P92 。例5:小新家养鹅7只,养鸭10只。养的鹅是鸭的几分之几
(1)提问:A,用谁作标准该怎样计算
B,与复习题对比,有哪些不同点和相同点
(2)归纳。
求一个数是另一个数的几倍与求一个数是另一个数的几分之几,都用除法计算,除数都作标准数,得到的商都表示两个数之间的关系,都不能写单位名称。
※ P92 。做一做
习前提问:说说用什么作标准数
三,加强练习,深化概念
1,P93 。4
§要求说说题目的思路和单位之间的进率。
2,P93 。6
提问:这两个问题中的标准量相同吗请说说标准量分别是什么
3,P93 。7
四,全课小结,抽象概括
1,本节课所学的两个内容分别是什么
2,你还有问题要问吗
五,家作。
P93 。5,8
活动目的:
活动的最终目标:出一本《成长的足迹》记录册。记录自己的学习生活,其中以上学后的内容为主。书中包括:封面、序言、图片、习作、书画作品、摄影作品、荣誉等内容。成长报告册是记录学生成长的足迹,成果的积累,反思,回忆的重要工具。它既重过程,又重发展;既重引导,又重评价。激励学生积极、主动的参与的过程,促进自己不断的发展。
活动形式:
收集、实践、操作,整理
活动准备:
空白册一本,学生平日里的照片,证书,特色的作品。
活动过程:
1、明确要求:
向学生提出活动的最终目标:出一本《成长的足迹》记录册。记录自己的学习生活,其中以上学后的内容为主。
2、资料搜集:
①我们这本《成长的足迹》里面的需要一些文字内容和图片资料。文字包括自己的习作、日记、片段等。图片资料包括同学们的书画作品、摄影作品、你的生活照等。而这些作品可以是大家在小学中的你最满意的作品,再邀请你的同学、师长帮你指点。
②把收集的所有作品集体挑选优秀作品自己编入《成长的足迹》之中。
3、分类整理:
对这本书的栏目的设置。可以设童年足迹、五彩的。世界、我们的荣誉,我的作品等栏目。(童年:童年中的学习生活的照片;五彩的世界:书画摄影作品;我们的荣誉:大家过去所得到的荣誉。)
4、交流修改:
初稿出来以后相互交流欣赏,再请师长、家长等一起征求意见,以便把记录册建得更趋完美。
活动建议:
1、召开家长会,为每位家长和孩子介绍讲解报告册的作用及制作的须知。
2、由于学生的年龄小,必须得到家长的鼎力支持,争取家长的支持。
3、经常展示让学生之间互相学习,不断完善,在过程中不断补充,记录自己的足迹。
教学目标和要求:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、列代数式
(1)若正方形的边长为a,则正方形的面积是 ;
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为 ;
(3)若x表示正方形棱长,则正方形的体积是 ;
(4)若m表示一个有理数,则它的相反数是 ;
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 元。
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)
2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1) ; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
4.例题:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1; ② ; ③πr2; ④- a2b。
答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2; ④是,它的系数是- ,次数是3。
例2:下面各题的判断是否正确?
①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab3c2的次数是0+3+2;
④-a3的系数是-1; ⑤-32x2y3的次数是7; ⑥ πr2h的系数是 。
通过其中的反例练习及例题,强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关。
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)
6.课堂练习:课本p56:1,2。
三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。
四、课堂作业: 课本p59:1,2。
板书设计:
教学内容:
教材P2~3例1、例2及练习一第1、2、3题。
教学目标:
知识与技能:使学生理解并掌握小数乘以整数的计算方法及算理。
过程与方法:经历将小数乘整数转化为整数乘整数的过程,使学生认识到转化的方法是学习新知识的工具。
情感、态度与价值观:感受小数乘法在生活中的广泛应用。
教学重点:
理解并掌握小数乘整数的算理,学会转化。
教学难点:
能够运用算理进行小数乘整数的计算。
教学方法:
迁移类推,引导发现,自主探索,合作交流。
教学准备:
多媒体。
教学过程
一、情境导入
1.谈话:同学们都喜欢哪些运动呢?
(生回答自己喜欢的运动……)
2.导入:是啊,多参加户外运动,有利于身体健康。老师也经常参加户外运动,放风筝就是我的最爱。下课咱们一起去放风筝好吗?
3.提问:但放风筝之前要先去买风筝,所以咱们就先去买几只风筝吧!(展示教材第2页例l情境图)从图中你知道了哪些信息?
引导学生观察并思考:图中小明他们想买3个3.5元的风筝需要多少钱?你会列式吗?
指学生回答:3.5×3,教师板书:3.5×3。
4.探索:观察这一道算式,它与我们以前学过的乘法算式有什么不同?
生观察后回答:这道算式的因数有小数。
5.揭题:以前我们学习的乘法都是整数乘整数,今天的算式中却出现了小数,这就是今天我们要研究的小数乘整数。(板书课题:小数乘整数)
二、互动新授
1.初步探究竖式计算的方法。
(1)引导学生准确算出一共需要多少钱?学生独立计算,并在小组内交流自己的想法。(师走到学生中,了解学生参与讨论的情况。)
(2)让学生说说自己的想法。
指名汇报,教师根据学生叙述板书,学生可能想出下面几种不同的方法:
方法1:
连加。展示:3.5+3.5+3.5=10.5(元)
师:你是怎么想的?
生:3.5×3就表示3个3.5相加,所以可以用乘法计算。(师板书意义)
方法2:化成元、角、分计算,先算整元,再算整角,最后相加。3元×3=9元,5角×3=1元5角,9元+1元5角=10元5角,即3.5×3=10.5(元)。
方法3:把3.5元看作35角,则35角×3=105角=10.5元。
(3)追问:刚才同学们开动脑筋想出了这么多方法,真了不起。如果要用竖式计算,你会算吗?请同学们想一想,并与同桌讨论:如何列竖式计算3.5×37
引导:出示(边说边演示):
强调:我们可以把3.5元转化成35角,用35角乘3得105角,再把105角转化成10.5元。注意在列竖式时因数的末尾要对齐。
2.自主探究,进一步理解算理,掌握计算方法。
(1)教师出示算式:0.72×5。
师:同学们看0.72不是钱数了,没有元、角、分这样的单位了,还能不能计算出结果呢?请同学们独立思考,然后在小组内交流计算方法。
(2)学生汇报演示。
可能有两种方法:加法和乘法。根据学生的汇报,展示这两种方法。
(3)比较:(见板书设计)
引导:请同学们比较一下这两种方法,你喜欢哪一种呢,为什么?
生:用乘法比较简便。
(4)追问:仔细观察乘法算式,谁给大家解释一下,你是怎样把乘数转化成整数的?
生:先把0.72小数点向右移动2位转化成72×5=360,得出结果后再把积的小数点向左移动两位就是3.6。
质疑:既然把所得积的小数点向左移动两位,那这个积就应该是一个两位小数,为什么现在只有一位呢?
生:小数的末尾添上或去掉0,小数的大小不变,所以积末尾的0可以直接去掉。
(5)注意:同学们在计算小数乘整数时,想到了用转化的方法把小数乘法转化成整数乘法计算。那么,谁能和大家说说小数乘整数应该怎样计算,计算时应注意什么呢?
指导学生归纳出:计算小数乘整数的乘法,要先把小数看作整数来乘,乘完以后,看因数扩大了多少倍,再把乘出的积缩小相同的倍数。当积的末尾有“O”时,应先点上小数点,再把“0”去掉。
师:(出示教材第2页情境图)我们通过解决买风筝的问题,认识并学会了小数乘整数的计算方法。我们看图中还有几种不同的风筝,如果买3个其他形状的,需要多少钱呢?能不能很快地算出来? 学生独立计算,汇报交流。
师:同学们顺利地买完了风筝,那就让我们就一起把风筝放飞吧!
三、巩固拓展
1.教材第3页做一做第1题
想一想:小数乘整数与整数乘整数有什么不同?
2.教材第3页做一做第2题
同桌之间相互谈谈是怎样点小数点的。
3.指名板演教材第3页做一做第3题
4.不用计算,你能直接说出下面算式的结果吗?
148×23=3404 14.8×23=( ) 1.48×23=( ) 0.148×23=( ) ( )×( )=34.04 四、课堂小结。同学们,这节课你们都学会了哪些知识?(学生自由发表想法)
作业:教材第4页练习练习一第1、2、3题。
板书设计
小数乘整数
求几个相同加数的各的简便运算。
教学内容:
课本第12~17页上的内容。
教学目标:
1.通过观察、分析、讨论、归纳、猜想的研究方法,小组合作研究出偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数= 奇数。
2.经历探索加法中数的奇偶变化过程,在活动重视学生体验探究方法,培养学生分析、解决问题的能力。
3.结合小游戏使学生体会生活中有很多事情中存在数学规律,从而调动学生学习数学的兴趣。
4.通过实践报告,以小组合作的形式探究加法中奇偶性的变化规律,培养学生的小组合作意识。
教学重点:
从生活中的摆渡问题,发现数的。奇偶性规律。
教学难点:
运用数的奇偶性规律解决生活中的实际问题。
教具准备:
投影、杯子。
教学过程:
一、揭示课题
自然数包含有奇数和偶数,一个自然数不是奇数就是偶数。这一节课我们要进一步认识数的奇偶性。
二、组织活动,探索新知
活动一:示图(右图)
小船最在南岸,从南岸驶向北岸,
再从北岸驶回南岸,不断往返。
1、
(1)小船摆渡11次后,船在南岸还是北岸?为什么?
(2)有人说摆渡100次后,小船在北岸。
他的说法对吗?为什么?
2、请任说一个摆渡的次数,学生回答在南岸还是北岸?
3、请学生画示意图和列表并观察。
4、想:摆渡的次数与船所在的位置有什么关系?
摆渡奇数次后,船在 岸。
摆渡偶数次后,船在 岸。
试一试
一个杯子杯口朝上放在桌上,翻动1次,杯口朝下,反动2次杯口朝上。翻动10次后,杯口朝 ,反动19次后杯口朝 。
1、想一想:翻动的次数与杯口的朝向有什么关系?
翻动奇数次后,杯口朝 。
翻动偶数次后,杯口朝 。
2、把杯子换成硬币你能提出类似的问题吗?
活动二
圆中的数有什么特点?正方形中的数有什么特点?
圆中的数都是偶数,正方形中的数都是奇数
试一试:(投影)
三、巩固练习(投影出示习题)
四、总结
这节课同学们有什么收获和体会?
五、作业
1、课本第17页试一试的题目。
2、优化作业
三维目标
1.知识与技能
(1)经历探究物体的形状与几何体的关系过程,能从现实物体中抽象得出立体图形。
(2)经历立体图形与平面图形的转换过程,掌握一些简单的立体图形与平面图形的互相转化的技能。
(3)经历对点、线、面、体关系的研究的数学活动过程,建立平面图形与立体图形的联系。
(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、射线、线段和角的表示方法;掌握角的度量方法。
(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,探索线段与线段之间、角与角之间的数量关系。
(6)认识线段的等分点,角的平分线、角角和补角的概念。
2.过程与方法
(1)会用掌握的几何体知识描述现实物体的形状,在探索立体图形与平面图形的关系中,发展空间观念。
(2)通过对本章的学习,学会在具体的现实情境中,抽象概括出数学原理。
(3)学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考。
(4)能在现实物体中,发现立体图形和平面图形。
(5)能在具体的现实情境中,发现并提出一些数学问题。
(6)通过小组合作、动手操作、实验验证的方法解决数学问题。
3.情感态度与价值观。
(1)积极参与数学活动的过程,敢于面对数学活动中的困难,并能独立地或通过小组合作的方法,运用数学知识克服困难,解决问题。
(2)通过对本章的学习,培养和提高抽象概括能力和空间想象能力,体验数学活动中探索性和创造性,感受丰富多彩的图形世界。
重、难点与关键
1.重点:
(1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;初步建立空间观念。
(2)掌握两点确定一条直线的性质,掌握两点之间线段最短的性质,会用符号表示直线、射线和线段,会比较线段的大小,会画一条线段等于已知线段,了解两点距离的定义。
(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系。
2.难点:
(1)立体图形与平面图形之间的互相转化。
(2)从现实情境中,抽象概括出图形的性质,用数学语言对这些性质进行描述。
3.关键:
(1)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣。
(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性。
课时划分
4.1 多姿多彩的图形 2课时
4.2 直线、射线、线段 2课时
4.3 角 4课时
数学活动 1课时
回顾与思考 2课时
教学设计
4.1 多姿多彩的图形
4.1.1 几何图形
教学内容
课本第116~120页。
1.知识与技能
(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;
(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。
2.过程与方法
(1)经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力。
(2)经历问题解决的过程,提高解决问题的能力。
3.情感态度与价值观
(1)积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;
(2)倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。
重、难点与关键
1.重点:从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点。
2.难点:立体图形与平面图形之间的转化是难点。
3.关键:从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键。
教具准备
长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片。
教学过程
一、引入新课
1.打开电视,播放一个城市的现代化建筑,学生认真观看。
2.提出问题:
在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?
二、新授
1.学生在回顾刚才所看的电视片后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验。
2.指定一名学生回答问题,并能正确说出这些几何图形的名称。
学生回答:有圆柱、长方体、正方体等等。
教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征。
3.立体图形的概念。
(1)长方体、正方体、球、圆柱、圆锥等都是立体图形。
(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)
(3)用幻灯机放映课本4.1-4的幻灯片(或用教学挂图).
(4)提出问题:在这个幻灯片中,包含哪些简单的平面图形?
(5)探索解决问题的方法。
①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案。
②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等。
4.平面图形的概念。
长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形。
注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形。
5.立体图形和平面图形的转化。
(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,让学生从不同方向看。
(2)提出问题。
从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?
(3)探索解决问题的方法。
①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形。
②进行小组交流,评价各自获得的结论,得出正确结论。
③指定三名学生,板书画出的图形。
6.思考并动手操作。
(1)学生活动:在小组中独立完成课本第119页的探究课题,然后进行小组交流,评价。
(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,并对学生给予鼓励,激发学生的探索热情。
7.操作试验。
(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性。许多立体图形都能展开成平面图形。
(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?再把展开的纸板复原为包装,体会立体图形与平面图形的关系。
三、课堂小结
1.本节课认识了一些常见的立体图形和平面图形。
2.一个立体图形从不同方向看,可以是一个平面图形;可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换。
注:小结可采取师生互动的方式进行,由学生归纳,教师进行评价、补充。
四、作业布置
1.课本第123页至第124页习题4.1第1~6题。
2.选用课时作业设计。
课时作业设计
一、填空题。
1.如下图所示,这些物体所对应的立体图形分别是:___________.
二、选择题。
2.如下图所示,每个图片都是由6个大小相同的正方形组成的,其中不能折成正方体的是( ).
A B C D
3.如下图所示,经过折叠能围成一个棱柱的是( ).
A.①② B.①③ C.①④ D.②④
三、解答题。
4.桌上放着一个圆柱和一个长方体[如下图(1)],请说出下列三幅图[如下图(2)]分别是从哪个方向看到的。
5.如下图,用4个小正方体搭成一个几何体,分别画出从正面、左面和上面看该几何体所得的平面图形。
6.如下图,动手制作:用纸板按图画线(长度单位是mm),沿虚线剪开,做成一个像装墨水瓶纸盒那样的长方体模型。
答案:
一、1.正方体、圆柱、圆锥、球、棱柱
二、2.C 3.D
三、4.分别是从左面、上面和正面看到的。 5~6.略