为帮助同学们更好掌握长方形、正方形面积的计算方法。这次漂亮的小编为您带来了小学三年级数学《长方形正方形面积的计算》教案【最新4篇】,希望能够给予您一些参考与帮助。
教学目标:
1.推导和掌握长方形、正方形的面积公式。会应用公式正确计算长方形、正方形的面积。
2.通过观察、探究等活动,在经历推导长方形、正方形的面积计算公式的抽象过程中,感受长方形和正方形的面积计算的现实性。
3.在学习活动中获得成功的体验,培养应用意识,增强自信心。
教学重点:
推导并掌握长方形、正方形的面积公式。
教学难点:
会应用长方形、正方形的面积公式解决问题。
一、复习导入
出示长方形和正方形请同学摸一摸它们的面积。
今天我们一起探究如何计算长方形和正方形面积。
二、探究新知
1、探索长方形的面积公式
师:拿出课前研究单,先回顾昨天的研究,然后小组交流你的想法。
小组汇报
说一说你的发现。
(每人说一个,说完一个交流一个。)
汇报的时候讲清楚为什么一行摆6个小正方形能正好摆开,因为面积是1平方厘米的小正方形边长是1厘米,就是6个小格,宽是3厘米,所以放3行,一共放18个小正方形,就是18平方厘米。瓷砖的数量也就是长方形的面积。
那么长方形的面积公式是长×宽。到底对不对呢?我们来验证看看。
课件出示
长是6厘米,宽是3厘米的长方形,用小正方形铺,数格。
长是8厘米,宽是4厘米的长方形,用小正方形铺,数格。
长是5厘米,宽是4厘米的长方形,用小正方形铺,数格。
师:看来长方形面积的计算公式就是长×宽
练一个,长是7厘米,宽是3厘米,求这个长方形的面积,长方形的面积公式是长×宽,所以,我们要先知道这个长方形的长和宽是多少,长是7厘米,宽是3厘米,那么他的面积就是长×宽=21平方厘米。
2.正方形面积的计算公式
师:同学们太厉害了,那现在注意看,我们把长方形变一变,看看发生了什么变化,这是什么图形?它的边叫什么?它的面积怎么求?
师:当边长都相等时,也就是正方形的计算公式就是边长×边长。
边长是3厘米的正方形,计算,验证。
边长是5厘米的正方形,计算,验证。
边长是7厘米的正方形,计算,验证。
三、巩固练习
1、教材第68页练习题,计算三个图形的面积(说)
2、一个长方形球场,宽是40米,长是宽的3倍,沿这个球场走一圈要走多少米?它的面积是多少平方米?
3、判断
(1)边长是1厘米的正方形,面积是4平方厘米。()
(2)长方形面积大于正方形的面积。()
(3)一个边长是4分米的正方形,周长和面积一样大。()
4、每人在卷子背面画一个长方形,画一个正方形(要取整厘米数的)请同桌互换,求它的周长和面积。
5、李爷爷家有一块正方形的菜地,一面靠墙。把这块正方形菜地围上篱笆,靠墙的一面不围,围后篱笆全长是63米。这块正方形菜地的周长是多少米?面积是多少平方米?
四、总结回顾,拓展延伸
在这一环节里,让学生说自己在这节课的收获,说说学习了这节课的知识在实际生活中有何帮助,让学生联系生活实际,能使学生深刻体会到所学知识的实用价值。
教学目标:
1、知识与能力:引导学生通过实验操作和观察比较,发现并验证长方形面积计算的公式,使学生初步理解掌握长方形面积的计算方法,会运用公式正确地计算长方形的面积。
2、过程与方法:渗透实验——发现——验证的学习方法,培养学生观察、质疑、分析、解决问题和动手操作的能力,从而使学生养成勇于探索和实践的良好品质。
3、情感态度与价值观:让学生在实验操作中体验学习的乐趣,在合作与交流的过程中,培养学生的参与意识、创新意识和合作能力。
教学重点:
理解、掌握长方形面积的计算公式并能应用以解决简单的实际问题。
教学难点:
引导学生通过实验,探究得出长方形面积的计算公式。
学习形式:
小组学习。
教学准备:
课件、卡纸、小正方形纸片、米尺
教学过程:
一、情境引入
同学们,老师遇到了一个数学问题,你能帮我解决吗?我请装修工人重新粉刷了一堵长方形墙壁的这个面(边播放幻灯片边讲),工钱是每平方米5元,你能不能帮我算出墙壁粉刷完后,我应该付给装修工人多少钱?
要算出一共要给装修工人多少钱?必须要知道什么?长方形的面积能用计算的方法求得吗?我们这节课就一起来研究长方形面积的计算方法。
板书课题:长方形面积的计算
二、实验操作,探究新知
1、小组合作,利用摆、拼的方法探究长方形面积与长、宽的关系。
同学们,现在我们一起来研究长方形面积的计算,现在请你们以小组为单位利用桌面上的1平方分米的小正方形拼1个长方形,面积大小由你们来确定。看看能不能在你们设计的长方形中有所发现。如果老师给的卡纸不能满足你的需要,你也可以在桌面上摆,然后汇报。
2、取3张有代表性的长方形拼图展示,并汇报拼图过程。
3、探究长方形面积计算方法。
老师沿着第一个长方形的长、宽各画一条线段,以每行摆正方形的个数引出"长"的长度,以摆的行数引出"宽"的长度。突出这个长方形的长和宽各是多少。第二个要求学生说第一排摆了几个,长是几,摆了三排,宽是几,摆了几个几,面积是几。第三个图则直接让学生说出长、宽各是多少,面积是多少。(按照学生回答板书)
长宽面积
( )分米( )分米( )平方分米
( )分米( )分米( )平方分米
( )分米( )分米( )平方分米
从展示的三个图形以及列表的数据中,你们能有什么发现呢?(小组交流)(补充完整板书:长×宽=长方形面积)
4、检验探究成果
①还没有展示的小组,检验你们所摆的长方形是否也有同样的普遍性。
②在每格是1平方厘米的小方格纸上任意画一个长方形,标出它的长和宽。然后列式计算你画的长方形的面积,计算后再用数方格的方法检验你的计算方法是否正确。
5、请大家翻开课本比较我们探究的计算办法与课本的是否一样。有不明白的地方吗?
6、假如我想求长方形的面积,必须要知道什么条件?
三、巩固练习,发展提高
(一)基本训练
1、完成书本98页做一做
2、回应课前的数学问题:给出长方形墙壁的长与宽,计算要付的工钱。(课件出示)
3、口答长方形长、宽、面积:8×3、4×6
课件演示由8×3的长方形转变成4×6的长方形的过程。
4、比较8×3、4×6两个长方形,你有什么发现?
(二)实际应用
5、学校准备在校园修建一个36平方米的长方形喷水池,现在请你当设计师,确定这个喷水池的长和宽各是多少?看能设计出多少种方案。你喜欢哪种设计方案?为什么?
6、屏幕出示一块碎玻璃板。知道面积是54平方分米,宽是6分米,求长是多少?
四、引导学生进行小结与质疑
有什么收获,提出不懂的问题,学了新知识后有什么新想法?
教学目标:
1、引导学生自主探究发现长方形、正方形面积计算方法,经历面积计算方法的探究过程,能正确计算长方形、正方形的面积。
2、渗透“猜想—实验—发现—验证”的学习方法以及相关事物之间都是有内在联系的辩证唯物主义思想,培养学生的自主学习能力、合作意识和科学探究精神。
3、让学生通过对数学内在规律的探索,来感受数学的魅力,体验成功探究的乐趣。
教学重点:引导学生通过操作实践、观察比较,探究得出长、正方形的面积公式。
教学难点:理解长、正方形的面积公式的推导过程。
教学用具:1平方厘米的正方形、尺子、课件等。
教学设想:
围绕长方形面积公式推导这个重点问题,我力图把教学的着力点放在公式是怎样被提出来的,又是怎样加以推导论证的。
1、复习中设置障碍,引出问题。激发学生内在的学习动机,引发学生对数学学习的兴趣乃是求知的前提。在长方形面积计算公式推导中,让学生初步感知长方形的面积与长、宽之间存在的关系,再通过启发谈话,激发学生的学习动机和求知欲,为推导公式作铺垫。
2、在动手操作中,解决问题。学具操作可以帮助学生理解一些抽象的概念,掌握一些数学规律,有利于教给学生探究知识的方法,让学生在操作中沿着具体——表象——抽象的过程发现问题,把握问题,寻找解决问题的方法。长方形面积公式推导中让学生利用1平方厘米的正方形纸片拼成一个长方形,在操作思维基础上,进一步感知长方形面积与它的长和宽的关系。
3、在思考、讨论、分析、验证中,得到结论。在操作交流之后,让学生对面积与长宽进行观察、比较、思考,组织学生围绕长方形面积和长宽之间有什么关系进行讨论,归纳分析问题,从而引导概括推导出长方形的面积计算公式。
4、在变化中,推导出正方形面积公式。充分利用长方形面积计算公式,正方形是特殊的长方形,懂得了长方形的面积计算方法,正方形的面积计算方法也就迎刃而解。顺理成章地得出正方形面积公式。这样使学生了解了一般与特殊的关系,又形象地沟通了正、长方形之间的联系。
5、在练习中,发展学生思维,促进技能形成。本节课练习题的设计,力求紧扣重点,层次清楚,题型多样,并体现面向全班学生,因材施教的要求。长方形、正方形面积公式得出后,均安排一组专项练习题,旨在及时巩固所学会公式,获取足够的反馈信息,以便教师及时调理教学节奏。综合练习题,有一定的灵活性,旨在强化应用两个面积计算公式,形成计算技能。最后提高练习是为学有余力的学生设计的,意在因材施教,发展智能。
教学过程:
一、复习导入,提出问题。
1、提问:上节课,同学们认识了面积和面积单位。什么叫做面积?常用的面积单位有哪些呢?(课件出示面积概念和常用的面积单位)
2、课件出示下图,并提问:这两个图形哪个面积比较大,大多少?(先估计)你们有什么办法比较吗?(生:用1平方厘米的面积单位进行测
(小结方法)
3、提问:要想知道黑板、教室面积有多大,你们怎么测量呢?(生:用1平方米的面积单位去测量。)要想游泳池、菜地、森林、操场、知道中国土地的面积有多大,你们怎么测量呢?使学生悟出:用面积单位一个一个去摆、去测量的方法太麻烦,也不实际。
4、教师在学生产生疑问的同时,再提出问题,引导学生去探索。
用面积单位去量的方法太不现实了,那么有没有一种简便的计算方法可以求出长方形和正方形的面积呢?这节课,就来研究长方形和正方形面积的计算。
板书课题:长方形、正方形面积的计算。
二、解决问题。
(一)、猜想,长方形的面积与什么有关?与长和宽有怎样的关系呢?
(二)、学生操作发现规律。
1、分组活动,出示活动要求。
(1)组长主持活动,活动中互相配合,控制音量。
(2)用小正方形摆成不同的长方形(个数可以不同),并照表做好记录。
(3)思考讨论:长方形的面积与长和宽有什么关系?
2、活动反馈。
操作完毕,反馈活动情况。结合反馈结果师板书黑板上的表格:
3、抽象概括
引导学生通过观察、比较,你发现了什么?归纳得出长方形所含的平方厘米正好等于长和宽所含厘米数的乘积。师生共同抽象概括出长方形的面积计算公式,并板书: 长方形的面积=长×宽
(三)、验证与拓展
1、验证:是不是所有的长方形面积都可以用长×宽来计算?出示简单的图形面积计算。让学生快速说出答案。
2、观察讨论正方形的面积公式。
师:这是什么图形?正方形的面积可以怎样计算呢?学生解答。
思考:正方形的面积与什么有关系?
反馈:对呀!正方形本身就是特殊的长方形嘛!只是长和宽相等的长方形,我们习惯上把正方形的长和宽叫边长,所以正方形的面积= 边长×边长 (板书)
三、巩固应用。
1、计算78页“做一做”
2、我们探究学习了计算长方形正方形面积的方法,在生活中有很多很多的长方形存在着,这些长方形的面积都是可以运用今天探究得到的方法来计算的,想不想试一试啊?计算数学书本封面和学生卡、黑板的面积。先估计再同桌合作量一量、算一算。(取整厘米数)问:你首先做了什么?
3、告诉茶几面积,猜长和宽(出示课件)
4、已知正方形的边长,对折一次后是什么图形,面积是多少?(备用)
四、课堂小结
收获是什么?还想知道什么问题?
教学目标
1.初步理解长方形面积计算公式的推导过程,能正确地计算长方形的面积.
2.在长方形面积计算公式的推导过程中,培养学生抽象概括能力及动手操作和解决实际问题的能力.
教学重点
理解并掌握长方形面积的计算公式,能正确地计算长方形的面积.
教学难点
引导学生通过亲身实践推导长方形面积的计算公式.
教学过程
一、复习准备.
上节课我们学习了面积和面积单位,老师给同学们留了一道思考题.如果我们要测量学校的操场面积,用一平方米的面积单位,一个一个地拼摆,可行吗?(不可行)
那有没有什么可行的方法呢?今天我们就来研究科学的计算方法.(板书课题:长方形面积的计算)
二、学习新课.
1.动手操作,弄清基本关系:
每排个数、排数与总个数的关系.
请同学拿出1平方厘米的<>小正方形,摆出上面的长方形想:一排摆了多少个小正方形?一共摆了几排?(学生操作时,老师把表格画在黑板上)
(一排摆几个小正方形、摆了几排、一共摆了多少个小正方形,它的面积是多少,老师依次在表格中板书出来)
请同学用1平方厘米的小正方形摆出上面这个长方形.
每排摆了几个?摆了几排?一共有多少个?你是怎样算出来的?
(每排个数×排数=总个数)
前面讲过有多少个面积单位,面积就是多少.所以可以用“面积”代替“总个数”,在表格图“总个数”下面写上“面积”(平方厘米).
下面就用简便方法计算长方形面积.
2.想象操作,弄清过渡关系:
长与每排个数、宽与排数的关系.
投影出示:C
思考:这个长方形长4厘米,沿着长边,一排可以摆几个1平方厘米的正方形?
不用动手摆,脑子里想一想.如果长方形长5厘米、10厘米……一排可以摆几个呢?
那么,你发现了什么?(两个同学互相说一说)
生:长几厘米,每排就摆几个.
师:那么就是说,长可以代替“每排个数”.老师在表格中“每排个数”下面写出“长”(厘米).
再看,长方形的宽是3厘米,沿着宽可以摆这样的几排呢?同学们不用动手摆,怎么知道可以摆3排呢?能不能说出宽与排数的关系?
生:宽是几厘米,就可以摆成这样的几排.
师:那么,也就是说用“宽”可以代替“排数”.(老师在表格中的“排数”下面写上“宽”(厘米).
请同学们很快求出这个长方形的面积是多少?说说你是怎样算出来的.
3.理解长方形的面积与长、宽的关系.
投影出示:D
师:请同学们讨论一下,这个长方形的面积是多少?你是怎样求出来的?长方形的面积与它的长和宽有什么关系?
学生讨论后,老师引导学生对照表格,请仔细观察,再回忆一下,刚才的图A、图B、图C、图D.你发现了什么?
老师进一步引导学生,计算长方形面积的方法(最简单的)谁能概括出来?
学生总结归纳出:
长方形面积=长×宽(老师板书)
回顾一下,对照表格进行验证.
出示例题:一个长5厘米,宽3厘米的长方形纸板,它的面积是多少?
师:用我们刚才学到的知识,请同学们自己解这道题.做完后,互相交换检查一下.
订正时,老师板书:
5×3=15(平方厘米)
答:它的面积是15平方厘米.
引导学生看书,质疑.
三、巩固反馈.
1.填表.(学生口答)
2.选择正确答案.
(1)一个长方形长6厘米,宽3厘米,面积是( ).
A.18厘米 B.18平方厘米
(2)一个长方形的长是8分米,宽是4分米,周长是( )
A.24分米 B.32平方分米
3.一个长方形花坛的面积是48平方米.问:它的长和宽分别可以是多少米?
四、小结.
这节课我们学习了什么?(长方形面积的计算.)要想求长方形的面积,必须知道什么条件?(长和宽)怎样计算长方形的面积?(长×宽=面积)计算长方形面积应该注意什么问题?(长和宽的单位名称要先统一)
五、课后作业.
1.一台电视机的外壳,一个面的长是44厘米,宽是34厘米.它的面积是多少平方厘米?
2.量出教室里黑板的长和宽各是多少分米.算出黑板的面积是多少平方分米.
3.选择一块长方形的地,沿着地边量出它的长和宽各是多少米.再算出这块地的面积是多少平方米.