北师大版六年级数学上册教案【优秀13篇】

作为一名人民教师,通常会被要求编写教案,借助教案可以让教学工作更科学化。那么优秀的教案是什么样的呢?这里给大家分享一些关于北师大版六年级上册数学优秀教案,方便大家学习。书读百遍,其义自见,下面是细致的小编帮大家找到的北师大版六年级数学上册教案【优秀13篇】,仅供参考,希望对大家有一些参考价值。

北师大版六年级上册数学优秀教案 篇1

教学内容:课本第52页~53页的例2、例3,完成“做一做”的题目和练习十三的 第1~4题。

教学目的:使学生学会并掌握按比例分配应用题的解答方法,能运用这个知识来解决一些日常工作、生活中的实际问题。

教学重、难点:按比例分配的实际应用。

教学过程:

一、导入

1、情境导入

老师今天向学校图书室借来50本图书准备分给我们班的男、女同学,请同学们说说该怎样分呢?(让学生自由发言,有可能得出男、女同学各分25本,实际上就是我们学过的平均分)

2、复习铺垫:我们班的男生30人、女生20人,人数不同,你说这样平均分合理吗?该怎样分才合理呢?今天我们就来研究象这样不是把一个数量平均分配,而是按一定的比例来进行分配。这种分配方法,通常叫做按比例分配。(板书:比的应用)

二、新授:

1、教学例1(自己改编):六年级向学校图书室借来图书50本,按3:2分配给男、女学生,男、女生各分得多少本?

对照课本例2的解题过程,让学生先独立解答,然后由各小组讨论,并提出问题来共同解答。

师引导:

(1)题目中要分配什么?是按什么进行分配的?(分配50本图书,男女生按3:2进行分配。)

(2)男女生分得本数的比是3:2,是什么意思?(就是说在50本图书中,男女可分3份,女生可分2份,一共是5份,男生占总数的5分之3,女生占总数的5分之2。)

(3)你能求出两种作物各播种多少公顷吗?怎样求?

引导学生进行自己解题。

2、引导学生再次阅读例2的解题过程,再次质疑

3、练习:做一做第1题。订正时说说解题时先求什么?再求什么?

4、教学例3。

(1)出示例3:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?

(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)

(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)

(4)怎样分别算出各班应种的棵数?引导学生解答。并且把书上的例3做完整。

(5)学生试做“做一做”中的第2题。

先让学生说一说奶糖、水果糖、酥糖和占500千克什锦 糖的几分之几?

三、巩固练习。

1.做一做第3题。

2.练习十三的第1、3题。

四、作业。 练习十三第2、4题。

北师大版六年级数学上册教案 篇2

一、教材分材:

教材通过介绍某实验田普通水稻与杂交水稻的产量,引出“增产百分之几”的实际问题。通过男孩提出“增产百分之几是什么意思”,引导学生分析数量关系,再一次体会百分数的意义。教材中的算一算提供了两种不同的解答方法,这样安排,开拓学生的思路,发展学生思维的灵活性。

教师可以引导学生画线段图理解。学生明确了“增产百分之几”的意思后,就可以让学生独立解答。需要注意的是,教学时要鼓励学生根据实际问题中的。数量关系和增产百分之几的意义解决问题,而不是依靠记忆题型和套用方法来解决问题。

二、学生分析

在此学习内容之前,学生已经学习了百分数的定义和读写、百分数和分数、小数的互化、百分数的简单应用、运用方程解决简单的百分数问题。在此基础上,进一步学习百分数的应用。教学目标:

1、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。教学过程

一、导入

线段图是把握数量关系的重要方法之一你能用线段图表示下面的数量关系吗?

在学校开展的第二课堂活动中,参加围棋班的有32人,参加航模班的人数比参加围棋班的多25%

学生独立完成线段图

展示学生成果

3、教师对学生的作品进行评价

引导学生分析数量关系,再一次体会百分数的意义。从复习中引导学生分析数量关系。

二、百分数的应用

1、出示教科书P23上面的问题

2、思考:“增产百分之几”是什么意思?学生自由发表自己的见解,教师评价。

杂交水稻比普通水稻增加的产量是普通水稻产量的百分之几

学生独立解答问题,通过介绍某实验田普通水稻与杂交的产量,引出“增产百分之几”的实际问题。

3、班内交流

方法一:

7-5.6 = 1.4(吨)1.4 ÷ 5.6 = 0.25= 25%方法二:

7 ÷ 5.6 = 1.25= 125%

125%-100% = 25%引导学生用两种不同的方法解答,开拓学生的思路,发展学生思维的灵活性。

三、试一试

1、出示教科书P23下面的问题

2、“几成”是什么意思?

成数主要用于农业收成几成就是十分之几。

一成就是1/10,也就是10%二成五就是2.5%,也就是25%重点理解“几成”的意思。让学生独立完成再交流,发展学生的思维。

3、学生独立解决问题(2.61-2.25)÷ 2.25 = 0.36 ÷ 2.25 = 0.16 = 16%

四、练一练

1、教科书P24练一练第1题

2、科书P24练一练第2题

3、教科书P24练一练第3题

五、课堂总结

通过今天的学习你有什么收获?

教学反思:整节课教学完成之后,可以说自己感触很深。这节课是百分数的具体应用。进一步提高学生运用百分数解决问题的能力,综观整个课堂,由于学生在课前调查收集的资料准备充分,所以在导入环节,学生兴趣浓厚,气氛较好。

六年级数学上册教案 篇3

教学目标:

1、通过解决生活中的`问题,体会数学知识在生活中的作用。

2、培养利用数学知识解决问题的能力。

教学重难点:

利用数学知识解决实际问题。

教学过程:

一、出示情景

一天有个年轻人来到王老板的店里买了一件礼物,这件礼物成本是18元,标价是21元。结果是这个年轻人掏出100元要买这件礼物,王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元。但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元。

现在问题是: 王老板在这次交易中到底损失了多少钱? 提示:其中损失成本18元,不要算成21元。

二、小组讨论

三、汇报结论

四、小结

王老板和街坊之间事实上互不亏欠。王老板在这次交易中到底损失了97元。

五、全课总结

师:通过这节课,你有什么收获?

生:………

北师大版六年级数学上册教案 篇4

教学目标:

1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

教学重点:

使学生经历从具体情境中抽象出比的过程,理解比的意义,了解比的各部分名称。

教学难点:

理解比的意义,掌握比与比值的区别。

教学过程:

一、情境导入

1、出示长方形。出示条件:长3米,宽2米,你能求什么呢?

预设可能提出的问题:

(1)周长和面积

(2)长比宽多几米?

(3)宽比长短几米?

(4)长是宽的几倍?

(5)宽是长的几分之几?

师:哪些问题是表示两个量之间的倍数关系的?今天我们一起来学习长与宽的另一种关系:比。

二、共同探讨,学习新知(1)比是一种什么样的概念?学生自学课本P68页例1,看看谁能弄懂这一部分内容。

(2)交流小结:

板书:长和宽的比是3比2,记作3:2宽和长的比是2比3,记作2:3(3)说一说:2∶3和3∶2中,比的前项和后项分别是是几?

(教师指出比是有序概念,颠倒比的前项和后项,意义会发生改变)

(二)、完

成试一试在日常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现“试一试”)(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?

(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?

(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)

三、教学例

2(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)

1、想一想,我们怎样求两人的速度?

2、

2、学生计算答案,汇报填表。

3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)

4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)

(二)、理解比的意义

1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比又可以表示两个数之间什么样的关系呢(板书:两个数的比 两个数相除)

2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例

1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)

(三)、认识“比值”、及与“比”的区别:

1、明确了比的意义,我们一起来算一算,上述比的前项除以后项的商是多少?

我们把比的前项除以后项所得的商叫做比值。

2、说说这几个比值分别表示什么?

3、讨论:同学们觉得比与比值的区别在哪里?

(比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)

(四)、“试一试”

1、完成“试一试”:(学生独立完成,指名板演)

2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的。前项,再写横线表示比,最后写后项,仍应读作3比2。)

(五)、比、除法和分数的关系

1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)相互关系 区别比 前项 比号(:) 后项 比值除法分数

2、完成“练一练”的1、2、3小题。

3、完成练习十三的第4题。

4、糖水的甜度(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)你知道哪一杯水更甜吗?为什么?

(2)(出示第三杯糖水,标出糖4克,水100克。)你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?

(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?

5、知识介绍:

同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”(课件介绍“黄金比”)。

五、总结:

今天我们学习了什么?你们有什么收获吗?还有什么问题吗?

小学数学六年级上教案 篇5

教学目标

1、通过观察和操作认识轴对称图形和轴对称的含义。

2、会画出轴对称图形的对称轴。

3、使学生在操作中加深对图形的认识,建立空间观念。

教学重点

认识轴对称图形,画对对称图。

教学难点

认识图形,建立空间观念。

教学过程

一、铺垫孕伏

1、口算

二、探究新知

1、投影出示

树叶图、青蜓图、天平图,任意不对称图形。

2、引导学生分组讨论

(1)这些图形,形状有什么特点?

(2)再找出一些生活中实例图形。

3、通过汇报,在教师指导下,使学生明确到:

树叶图、青蜓图、天平图,图形左右部分一样,并且说明:这些图形给人以美感,如果想象一个图形不对称,使人觉得不舒服。

4、(课件演示:对称图形下载)

将树叶图对折、青蜓图对折,天平图对折,使学生观察到这些图形,沿着一条直线对折,两侧的图形能够完全重合。

5、同桌同学合作实验

先把一张纸对折,在折好的一侧画出图形,剪下来,再把纸打开,看一看能得到一个什么样的图形?

6、教师明确:这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴。

7、投影出示,做一做和练习二十六1题,引导学生判断。

(1)教师出示投影。

(2)学生讨论、交流。

8、分组实验,组内每人画一种图形。

(1)出示101页上图。

(2)每人在方格纸上画一种图形,并剪下来。

(3)比较,哪些图形是轴对称图形,画出它们的对称轴。

(4)教师指导。

(5)使学生明确:正方形、长方形、等腰三角形、等腰梯形、圆,都是轴对称图形。

(6)启发学生,每一种图形,可以画几条对称轴。

学生分组讨论交流。

汇报:正方形可以画4条对称轴。

长方形可以画2条对称轴。

等腰三角形、等腰梯形各有一条对称轴。

圆有无数条对称轴。

(7)引导学生回忆判断,学过的平面图形,哪些是轮对称图形,哪些图形只有一条对称轴,哪些不止一条,可以出示图形。

三、课堂练习

1、下面的数字,哪些是轴对称图形?它们各有几条对称轴?

2、把一张纸对折后,剪下一个图形,把剪下的图形展开,所得的图形是不是轴对称图形?

引导学生同桌或组内操作。

引导学生在书上填画。

四、课后作业

运用学过的知识,用纸剪去一个对称图形,可以怎样剪?

五、板书设计

轴对称图形

北师大版六年级数学上册教案 篇6

教学目标:

1、进一步理解和掌握圆的周长和面积的计算方法,能熟练地计算圆的周长和面积。

2、能灵活运用本单元研究得出的知识解答问题。

3、 进一步感受数学的应用价值。

教学重点:

圆的周长和面积的。计算。

教学难点:

综合应用。

教学过程:

一。引入

1.问:这个单元我们一起学习了哪些知识?师生一起归纳、整理本单元所学内容。

2.揭示课题。

二。展开

1.求圆面积的练习

先用小黑板出示P27练习1——2再指名板演,

然后让板演者说说计算过程。最后再次复习圆面

积在各种条件下的计算公式:S=πr2=π()2

2.综合应用。

投影出示P27练习3~4题,先由4人组成小组

进行讨论,并解答,然后在全班同学面前汇报,

特别要说清思考过程,最后,教师讲解。

三。总结

本节课我们复习了什么?

四。作业

课后反思:

教学内容 练习一(2) 课时

教学目标:1.能灵活运用本单元研究得出的知识解答问题。

2.通过图形的组合,发展学生的空间想象能力。

3.进一步感受数学的应用价值。

教学重点:加深对圆的周长和面积的理解,灵活运用所学知识的能力。

教学难点:培养学生的空间能力,提高解决实际问题的能力。

一。复习

1、什么叫半径?什么叫直径?怎样求圆的周长?

怎样求圆的面积?

二。展开绿色圃中

1.练习。

先指名板演,其余同学各自做在草稿纸上,

然后全体师生共同讲评,指出存在的错误,

尤其是做在草稿纸上的同学一定要自己找出

错误的原因和正确的解答过程,小组进行练习。

2.小结。

三。巩固练习

2021最新北师大版六年级上册数学教案 篇7

教学目标

1 。理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

2 。能正确地计算圆柱的表面积。

3 会解决简单的实际问题。

4 。初步培养学生抽象的逻辑思维能力。

教学重点

理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

教学难点

能充分运用圆柱表面积的相关知识灵活的解决实际问题。

教学过程

一 复习旧知。

1 计算下面圆柱的侧面积。

(1)底面周长2.5米,高0.6米。

(2)底面直径4厘米,高10厘米。

(3)底面半径1.5分米,高8分米。

2 求出下面长方体、正方体的表面积。

(1)长方体的长为4厘米,宽为7厘米,高为9厘米。

(2)正方体的棱长为6分米。

3 讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

二 新课导入。

1 教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)

2 学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

(1)学生分组讨论。

(2)学生汇报讨论结果。

3 反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)

4 教师进行圆柱模型表面展开演示。

(1)学生说说展开的侧面是什么图形。

学生:圆柱展开的侧面是一个长方形。

(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)

(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

5 说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

三 新课教学。

1 例2 一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)

2 学生尝试练习,教师巡回检查、指导。

3 反馈评价:

(1)侧面积:2×2×3.14=56.52(平方分米)

(2)底面积:3.14×2×2=12.56(平方分米)

(3)表面积:56.52+12.56=81.64(平方分米)

答:它的表面积是81.64平方分米。

4 学生质疑。

5 教师强调答题过程的清楚完整和计算的正确。

6 教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

四 反馈练习:试一试。

1 学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

2 学生交流练习结果(注意计算结果的要求)。

3 教师评议。

教师:在实际运用中四舍五入法和进一法有什么不同?

学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

五 拓展练习

1 教师发给学生教具,学生分组进行数据测量。

2 学生自行计算所需的材料。

3 计算结果汇报。

教师:同学们的答案为什么会有不同?哪里出现偏差了?

学生甲:可能是数据的测量不准确。

学生乙:可能是计算出现错误。

教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

六 巩固练习。

1 计算下面图形的表面积(单位:厘米)(略)

2 计算下面各圆柱的表面积。

(1)底面周长是21.52厘米,高2.5分米。

(2)底面半径0.6米,高2米。

(3)底面直径10分米,高80厘米。

3 一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

4 一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)

小学数学六年级上教案 篇8

【教学内容】

苏教版国标本六年级上册P68~70认识比例1、例2以及相应练习。

【教学目标】

1.使学生在具体的情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2.使学生经历探索比与除法、分数关系的过程,初步理解比与分数、除法的关系,明白比的后项不能为0的道理,会把比改写成分数的形式。

3.使学生在数学活动中,培养学生分析、综合、抽象、概括等能力,体会数学知识之间的联系,感受数学学习的乐趣。

【教学重难点】

理解比的意义,比与分数、除法的关系。

【教学过程】

一、创设情境,引入比。

1.图片激趣,引发讨论,设置悬念。

2.电脑呈现例l主题图。

提问:2杯果汁和3杯牛奶这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?

3.揭题:比较两个数量之间的关系还可以用一种新的方法比。

二、自主探索,认识比。

(一)初步理解比

1.启发谈话:用比怎样表示2杯果汁和3杯牛奶这两个数量之间的关系呢?刚才有同学会说,谁来试着说一说。

果汁的杯数相当于牛奶的2/3,我们还可以说成果汁与牛奶杯数的比是2比3。

牛奶的杯数相当于果汁的3/2,还可以怎样说成牛奶与果汁杯数的比是3比2。

2.看书自学,汇报交流:

(1)写法

(2)各部分名称

(3)比是有序的。

3.完成p68试一试

(二)深入认识比

1.认识不同量之间的比。

(1)生读例2,师:读了这条信息,你能提出什么数学问题?

(请学生分别算出它们的速度,填入表格。)

(2)指出:像路程和时间这两个有着相除关系的量,我们也可以用比来表示。

交流得出:小军走的路程与时间的比是900:15、小伟走的路程与时间的比是900:20。

(3)追问:900:15表示什么?900:20呢?(速度)

2.丰富对不同类量的两个数量比的认识。

张祥买3本笔记本用了10.5元。

提问:这句话中告诉了我们哪两个量?它们之间有着怎样的关系呢?会用比来表示吗?

3.总结概括比的意义。

(1)观察一下这几组式子,总结相同的特点。

(2)提问:你认为两个数的比表示的是两个数量之间怎样的一种关系?

(3)小结:两个数的比归根结底表示的都是两个数相除。

三、自学课本,内化比。

1.自学课本p69

2.反馈:通过看书,你还知道了什么?

求比值。

分数形式的比。

理解比、除法、分数之间的关系

新北师大版六年级上册数学优秀教案 篇9

教学分析:

按比例分配的练习。

学情分析:

已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。

教学目标:

能运用比的意__决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。

教学策略:

练习、反思、总结。

教学准备:

小黑板

教学过程:

一、基本练习

(一)六1班男生和女生的比是3:2

1、男生人数是女生人数的( )

2、女生人数是男生人数的( ),女生人数和男生人数的比是( )。

3、男生人数占全班人数的( ),男生人数和全班人数的比是( )。

4、全班人数是男生人数的( ),全班人数和男生人数的比是( )。

5、女生人数占全班人数的( ),女生人数和全班人数的比是( )。

6、全班人数是女生人数的( ),全班人数和女生人数的比是( )。

(二)学校有买来小足球和小篮球120个,小足球和小篮球个数的比是3比5。学校买来小足球和小篮球各多少个?

把250按2比3分配,部分数各是多少

二、变式练习

1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?

2、有一种药水,按药液与水的比为1比5000配制而成。用这样的药液0.5千克,可配制这样的药水多少千克?

教学反思:

提高练习的灵活度,以及练习的形式。

六年级数学上册教案 篇10

设计说明

复习是对已学知识加以回忆,并进行系统整理的过程,不是讲授新知识,因此要特别注意知识间的联系,将所学知识系统化。到本册教材为止,小学阶段的三种统计图已经全部教学结束,所以在本节课中要特别注重三种统计图的对比,引导学生体会如何根据统计需要选择恰当的统计图,不同的统计图能反映出数据的哪些信息等;通过对数据进行分段整理和比较,让学生从不同方面对数据进行分析和比较,培养学生从不同角度分析数据的能力。

课前准备

教师准备 PPT课件

教学过程

归纳整理

1、归纳整理。

师:本学期我们在统计与概率方面学习了哪些知识?请同学们先自行整理,再在小组内交流。

借鉴教材“独立思考”板块,引导学生从统计图的类型、特点和分段整理、分析数据等方面进行回忆整理。

2、学生汇报,相互补充。

引导学生自由交流、相互补充,建立知识之间的联系。

设计意图:通过引导学生回顾、整理统计与概率部分的知识,学生对统计图方面的知识有了一个比较系统的了解,建立了知识之间的联系,形成了相对完善的知识体系。

分类整理

1、复习扇形统计图的特点和作用。

(1)回顾。

本学期我们学习了扇形统计图,你们对扇形统计图有哪些了解?

(①特点:用整个圆的面积表示总数,用圆内的扇形面积表示各部分占总数的百分数。②作用:从图中能清楚地看出各部分与总数的百分比,以及各部分与各部分之间的关系)

(2)巩固练习。

组织学生完成教材106页1题。

①呈现问题,请学生独立思考并尝试解决。

②组织学生交流汇报。

2、根据统计要求选择恰当的统计图。

(1)呈现问题:

下面几组数据分别选用哪种统计图表示更合适?(课件出示)

王羽家去年1~6月份支出情况统计表

(2)明确三种统计图的作用。

师:你们知道三种统计图各自有着怎样的特点和作用吗?引导学生在小组内以表格的形式整理出三种统计图的特点和作用。

条形统计图

折线统计图

扇形统计图

特点

用一个单位长度表示一定的数量。

用整个圆的面积表示总数,用圆内扇形的面积表示各部分占总数的百分比。

用直条的长短表示数量的多少。

用折线的起伏表示数量的增减变化。

作用

从图中能清楚地看出各部分数量的`多少,便于相互比较。

从图中能清楚地看出数量的增减变化情况,也能看出各部分数量的多少。

从图中能清楚地看出各部分占总数的百分比,以及各部分之间的关系。

(3)学生独立解答。

(表①要表示出去年1~6月份支出的增减变化情况,应选用折线统计图;表②要表示出去年5月份各种支出所占百分比的情况,应选用扇形统计图;表③要表示出去年5月份各种支出的具体数量,应选用条形统计图)

设计意图:

通过复习扇形统计图的特点和三种统计图的作用,进一步培养学生归纳知识、解决问题的能力。

3、复习分段整理数据。

(1)回顾:本学期在学习数据的整理、分析方面我们有哪些收获?

学生交流:除了可以将数据进行排序外,还可以将数据进行分段整理、分析,并交流分段整理、分析数据的方法和作用。

(2)巩固练习。

组织学生完成教材106页2题。

①组织学生整理数据。

②小组内讨论解题方法并汇报。

六年级数学上册教案 篇11

教学分析:

按比例分配的练习。

学情分析:

已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。

教学目标:

能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。

教学策略:

练习、反思、总结。

教学准备:

小黑板

教学过程:

一、基本练习

(一)六1班男生和女生的比是3:2

1、男生人数是女生人数的( )

2、女生人数是男生人数的( ),女生人数和男生人数的比是( )。

3、男生人数占全班人数的( ),男生人数和全班人数的比是( )。

4、全班人数是男生人数的( ),全班人数和男生人数的比是( )。

5、女生人数占全班人数的( ),女生人数和全班人数的比是( )。

6、全班人数是女生人数的( ),全班人数和女生人数的。比是( )。

(二)学校有买来小足球和小篮球120个,小足球和小篮球个数的比是3比5。学校买来小足球和小篮球各多少个?

把250按2比3分配,部分数各是多少

二、变式练习

1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?

2、有一种药水,按药液与水的比为1比5000配制而成。用这样的药液0.5千克,可配制这样的药水多少千克?

教学反思:

提高练习的灵活度,以及练习的形式。

六年级数学上册教案 篇12

教学目标:

1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

教学重点:

使学生经历从具体情境中抽象出比的过程,理解比的意义,了解比的各部分名称。

教学难点:

理解比的意义,掌握比与比值的区别。

教学过程:

一、情境导入

1、出示长方形。出示条件:长3米,宽2米,你能求什么呢?

预设可能提出的问题:

(1)周长和面积

(2)长比宽多几米?

(3)宽比长短几米?

(4)长是宽的几倍?

(5)宽是长的几分之几?

师:哪些问题是表示两个量之间的倍数关系的?今天我们一起来学习长与宽的另一种关系比。

二、共同探讨,学习新知

(1)比是一种什么样的概念?学生自学课本P68页例1,看看谁能弄懂这一部分内容。

(2)交流小结:

板书:长和宽的比是3比2,记作3:2宽和长的比是2比3,记作2:3

(3)说一说:2∶3和3∶2中,比的前项和后项分别是是几?

(教师指出比是有序概念,颠倒比的前项和后项,意义会发生改变)

(二)、完成试一试

在日常生活中,我们经常用比表示两个数量之间的关系,比如这瓶洗洁液,上面的使用说明就是用比来表示的。(呈现“试一试”)

(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?

(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?

(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)

三、教学例

2(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(呈现例2)

1、想一想,我们怎样求两人的速度?

2、学生计算答案,汇报填表。

3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)

4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)

(二)、理解比的意义

1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比又可以表示两个数之间什么样的关系呢(板书:两个数的比 两个数相除)

2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例

1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)

(三)、认识“比值”、及与“比”的'区别:

1、明确了比的意义,我们一起来算一算,上述比的前项除以后项的商是多少?

我们把比的前项除以后项所得的商叫做比值。

2、说说这几个比值分别表示什么?

3、讨论:同学们觉得比与比值的区别在哪里?

(比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)

(四)、“试一试”

1、完成“试一试”:(学生独立完成,指名板演)

2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)

(五)、比、除法和分数的关系

1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)相互关系 区别比 前项 比号(:) 后项 比值除法分数

2、完成“练一练”的1、2、3小题。

3、完成练习十三的第4题。

4、糖水的甜度

(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)你知道哪一杯水更甜吗?为什么?

(2)(出示第三杯糖水,标出糖4克,水100克。)你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?

(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?

5、知识介绍:

同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”(课件介绍“黄金比”)。

五、总结:

今天我们学习了什么?你们有什么收获吗?还有什么问题吗?

六年级数学上册教案 篇13

【教学内容】

教科书第1~3页例1、2,练习第1~4题。

【教学目标】

1.能理解分数乘整数的意义,经历探索分数乘整数的计算方法的过程。

2.能根据分数乘整数的意义推导分数乘整数的计算法则,并能正确地进行计算。

3.培养学生的迁移类推能力和自主探索的精神。

【教学重、难点】

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。

【教学过程】

一、欣赏主题图,激趣引入

教师:同学们,新的一学期开始了,看看愉快的数学之旅又将带我们到哪些新的站点呢?请同学们观察主题图。(多媒体出示主题图)

教师:认真观察,说说你获得了哪些信息?(学生观察回答)

你们能根据主题图提出哪些数学问题?

这些问题你们能试着列出算式吗?它们都是些什么算式?

(老师随着学生的回答板书相关的连加算式或分数乘法算式)

这些算式中的数有什么特点呢?

学生:有的是加法算式,有的是乘法算式,但这些数都与分数有关。

揭示课题:从今天开始,我们就一起来研究分数乘法。

[评析:新学期开始的第一节课,通过主题图既调动学生开学学习的积极性,又在主题图的信息中,感受数学与生活的联系。同时,教师又注意引导学生在众多信息中注意搜索与分数乘法相关的信息,为本课时教学作好铺垫。]

二、探究新知

1.感知分数乘法的意义。

(1)复习整数乘法的意义。

课件展示,并配上声音:每人吃5个饼,4人共吃多少个饼?

学生列式:5+5+5+55×4

教师:表示什么意思呢?4个5相加的和是多少?5的4倍是多少?

(2)分数乘法的意义。

课件展示例1的情境图:每人吃15个饼,4人吃多少个饼?

学生尝试列式:15+15+15+1515×4或 4×15

教师:表示什么意思呢?与整数乘法的意思相同吗?(4个15是多少;15的4倍是多少?)

2.利用意义探索计算法则。

(1)教师:15×4该怎样算呢?自己在练习本上试一试。

全班汇报,说说你得多少,怎样想的?指名学生回答,得出:

15×4表示4个15相加,4个15就是45。

(2)试一试。

45×2=3×14=

学生在练习本上做好后,集体订正。并请学生说说怎样想的。

(3)口算(教师即时板书):25×2、5×17、29×4、2×45。

(4)议一议:这些分数乘法有什么特点?

结合学生回答板书(分数乘整数),根据刚才的计算,你觉得分数乘整数怎样算?

根据交流小结:分数乘整数,用整数与分子相乘的积作分子,分母不变。

3.教学例2。

(1)出示:38×2 。

教师:这个乘法会算吗?先自己试一试。

学生尝试,并适时提问:你在计算过程中遇到什么问题,你怎么解决的?

教师巡视,发现学生不同的约分方法,并抽学生板书。(学生可能出现:计算结果不约分;先计算出结果再约分;或在计算过程中先约分再计算这三种情况)

全班交流,指名说说计算过程中遇到什么问题,如何解决的。

针对三种不同的情况进行评价:你喜欢哪种方法?为什么?

结合学生交流,老师强调:在分数乘法中,计算结果要化成最简分数。我们可以先将整数与分母约分,再按分数乘整数的方法计算。这样做,计算数据较小,计算更准确。

(2)练习:29×6=12×34=

观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与分子约分,为什么只能将整数与分数的分母约分。

集体订正时,请学生说说计算与约分方法。教师展示一种学生将分子与分子约分的错误方法,让学生辨析。

(3)学生再次小结分数乘整数的计算方法。

现在你能比较完整地总结分数乘整数的'计算方法吗?

结合学生交流,小结方法:先看整数与分数的分母能否约分,能约分的先约分,然后用整数与分子相乘的积作分子,分母不变。

[评析:从整数乘法的意义自然过渡到分数乘整数的意义,并通过意义探索计算方法,让数学知识前后联系更紧密。同时注重学生计算方法的主动探索,强调数学知识与方法的自主建构,注重学生错误的提前预判。]

三、巩固练习,反馈提高

1.课堂活动第1题。学生独立完成,集体订正。教师追问:18×5表示什么意思?

2.练习第1~3题。学生独立完成,教师巡视指导学困生,集体讲评。抽1~2题说说计算方法。

四、课堂小结:

本节课你有什么收获?关于分数乘法,你还想知道什么?

[评析:对于分数乘整数的计算法则,教师并没有过多地干预与包办,而是充分的在情境图的基础上,通过整数乘法意义的回顾,经历计算方法的自主探索过程,掌握计算方法。同时,注重独立思考与合作交流的学习方式的运用,让学生真正成为学习的主人。]

一键复制全文保存为WORD
相关文章