这次漂亮的小编为您带来了二次函数的顶点课件优秀4篇,希望能够给予您一些参考与帮助。
(1)开口___________;
(2)对称轴是___________;
(3)顶点坐标是___________;
(4)当时,随的增大而___________;
当时,随的增大而___________;
(5)函数图象有___________点,函数有___________值;
当_____时,取得__________值____.
问题:那二次函数的图象会是什么样子呢?它会有哪些性质呢?它与的图象有关系吗?
Ⅱ.自主探索、小组互学、展学提升:
1、学生活动内容及方法
学生以小组为单位:(1)作出二次函数的图象;
(2)观察、思考并与同伴交流完成“议一议”
(3)一小组派代表展示,其它小组与老师评价、完善。
2、自学问题设计
(1)作出二次函数的图象:
列表:观察的表达式,选择适当的值,填写下表:
描点:在直角坐标系中描出各点;
连线:用光滑的曲线连接各点,便得到函数的图象。
议一议:
仔细观察,用心思考,与同伴交流:
(1)二次函数的图象是什么样子?
(2)它的开口方向是什么?
(3)它是轴对称图形吗?对称轴是谁?
(4)它的顶点坐标是什么?
(5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?
(6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?
此时,等于多少?
(7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?
3、教师活动内容
教师巡视,察看学生完成情况并适时给予指导。
当学生展开讨论时,参与到学生的交流中启发、点拨学生的思维。
当学生展示时,适时质疑、反问,帮助学生完善自己的思考
Ⅲ.自主探索、展示完善:
1、学生活动内容及方法
学生通过上一环节的作图、观察、比较、归纳、交流讨论等过程,已经积累了一些方法和经验,所以此环节由学生自己独立完成:
(1)作出二次函数的图象;
(2)观察、思考完成“想一想”
(3)一学生展示,其他同学与老师评价、完善。
2、自学问题设计
问:
二次函数的图象会是什么样子?它与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?它图象的开口方向、对称轴、顶点坐标是什么?它的增减性、最值是什么情况呢?请你先猜一猜,然后做出它的图象观察思考,你猜的对吗?
(1)作出二次函数的图象:
列表:观察的表达式,选择适当的'值,填写下表:
描点:在直角坐标系中描出各点;
连线:用光滑的曲线连接各点,便得到函数的图象。
(2)想一想:
仔细观察,用心思考:
(1)二次函数的图象是什么样子?
(2)它的开口方向是什么?
(3)它是轴对称图形吗?对称轴是谁?
(4)它的顶点坐标是什么?
(5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?
(6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?
此时,等于多少?
(7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?
3、教师活动内容
教师巡视,察看学生解决问题情况并适时指导。之后请学生展示,师生共同评价完善。
Ⅳ.自主探索、小组互学、展学提升:
1、学生活动内容及方法
学生在前面作图、观察、思考、交流讨论的基础上,完成“猜一猜”,然后师生共同利用计算机进行验证。最后,学生在交流讨论的基础上总结二此函数的性质。
2、导学问题设计
猜一猜:
(1)二次函数的图象是什么样子呢?二次函数的图象与二次函数的图象有什么关系?请你描述一下二次函数的性质。
(2)二次函数的图象是什么样子呢?二次函数的图象与二次函数的图象有什么关系?请你描述一下二次函数的性质。
议一议:
(1)二次函数的图象与二次函数的图象有什么关系?
(2)二次函数的性质:
二次函数基本定义
一般地,把形如y=ax2+bx+c(a≠0),(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。
教学目标
(一)教学知识点
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3.通过学生共同观察和讨论,培养大家的合作交流意识。
(三)情感与价值观要求
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.具有初步的创新精神和实践能力。
教学重点
1.体会方程与函数之间的联系。
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点
1.探索方程与函数之间的联系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法
讨论探索法。
教具准备
投影片二张
第一张:(记作§2.8.1A)
第二张:(记作§2.8.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
初中二次函数教学课件
初中二次函数教学课件
教学目标设计
知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。
能力训练要求
1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力, 学会用建模的思想去解决其它和函数有关应用问题。
2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。
情感与价值观要求
1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。
教学方法设计
由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
教学过程
导学提纲
设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富 ,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受 ,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
(一)前情回顾:
1.复习二次函数y=ax2+bx+c(a≠0)的图象、顶点坐标、对称轴和最值
2.(1)求函数y=x2+ 2x-3的最值。
(2)求函数y=x2+2x-3的最值。(0≤x ≤ 3)
3、抛物线在什么位置取最值?
(二)适当点拨,自主探究
1.在创设情境中发现问题
:请你画一个周长为40厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?
2、在解决问题中找出方法
:某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大?
(问题设计思路:把前面矩形的周长40厘米改为40米,变成一个实际问题, 目的在于让学生体会其应用价值——我们要学有用的数学知识。学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理 论依据,这样首先要建立函数模型,合作探究中在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础。)
3、在巩固与应用中提高技能
例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃 ,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD究竟应为多少米才能使花圃的面积最大?
(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的`角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)
解:设垂直于墙的边AD=x米,则AB=(32-2x) 米,设矩形面积为y米2,得到:
Y=x(32-2x)= -2x2+32x
[错解]由顶点公式得:
x=8米时,y最大=128米2
而实际上定义域为11≤x ﹤16,由图象或增减性可知x=11米时, y最大=110米2
(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错 解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与 形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。)
(三)总结交流:
(1) 同学们经历刚才的探究过程,想想解决此类问题的思路是什么?.
引导学生分析解题循环图:
(2)在探究发现这些判定方法的过程中运用了什么样的数学方法?
(四)掌握应用:图中窗户边框的 上半部分是由四个全等扇形组成的半圆,下部分是矩形。如果制作一个窗户边框的材料总长为15米,那么如何设计这个窗户边框的尺寸,使透光面积最大(结果精确到0.01m2)?(设计思路:先出示如图图形,然后引伸到课本中的图形,让学生有一个思考递进的空间。)
(五)我来试一试:
如图在Rt△ABC中,点P在斜边AB上移动,PM⊥BC,PN⊥AC,M,N分别为垂足,已知AC=1,AB=2,求:
(1)何时矩形PMcom的面积最大,把最大面积是多少?
(2)当AM平分∠CAB时,矩形PMcom的面积。
(六)智力闯关:
如图,用长20cm的篱笆,一面靠墙围成一个长方形的园子,怎样围才能使园子的面积最大?最 大面积是多少?
作业:课本随堂练习、习题1,2,3
板书设计
二次函数的应用——面积最大问题
课后反思
二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。 本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解决与交流, 让学生通过掌握 求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题。
教材中设计先探索最大利润问题,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。所以在例题的处理中适当的降低了梯度,让学生思维有一个拓展的空间,也有收获快乐 和成就感。在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高。同时也注重对解题方法与解题 模式的归纳与总结,并适当地渗透转化、化归、数形结合等数学思想方法。
就整节课看,学生的积极性得以充分调动,特别是学困生,在独立思考和小组合作中改变以往的配角地位,也能积极参与到课堂学习活动中,今后继续发扬从学生出发,从学生的需要出发,把问题梯度降低,设计让学生在能力范围内掌握新知识,有了足够的热身运动之后再去拓展延伸。