机械手论文【10篇】

这次帅气的小编为您整理了机械手论文【10篇】,如果对您有一些参考与帮助,请分享给最好的朋友。

机械手论文 篇1

关键词:机械手;MATLAB仿真;控制

机械手是一种模拟人手操作的自动机械。它可按固定程序抓取、搬运物件或操持工具完成某些特定操作。广泛应用于机械制造、冶金、电子、轻工和原子能等部门。

机械手主要由手部和运动机构组成。手部是用来抓持工件的部件,根据被抓持物件的形状、尺寸、重量、材料和要求有多种结构形式,如夹持型、托持型和吸附型等。运动机构使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式称为机械手的自由度。自由度是机械手设计的关键参数。自由度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有2~3个自由度。

1 仿真流程

本文主要用S函数编写程序来实现一个非线性系统的控制仿真,本文选择两关节机械手模型进行试验,两关节机械手是简单的一类关节型机器人,通过对两关节机械手的控制,了解关节的输出位置,估计通常难于准确测量的不确定摩擦力和外部扰动的影响,这样才能保证全局的渐进稳定。因此本文针对两关节机械手的轨迹跟踪问题,通过已建立的数学仿真模型,用MATLAB语言中的S函数编制仿真程序进行位置和速度跟踪来验证该模型是否稳定。

在仿真开始时,Simulink首先对模型进行初始化,此阶段不属于仿真循环。在所有模块都初始化后,模块进入仿真循环,在仿真循环的每个阶段,Simulink都要调用模块或者S函数。

2 两关节机械手的设计分析

本文着重研究了 Matlab/Simulink环境中如何使用S-function模块建立符合要求的机械手模型,正确实现理论轨迹跟踪,继而进行了机械手的动力学模型仿真,将模型仿真中得到的运动轨迹图进行分析验证理论计算的结果;模块仿真,使仿真从单纯的抽象的数字化仿真中走出来,更加直观形象;仿真轨迹的优化,提高了机械手的工作效率;为串联机械手的进一步研究奠定了基础。S函数模块可以描述任意复杂的系统。本文选择了两关节机械手模型,根据其数学模型搭建出仿真模型,并利用MATLAB语言中的S函数模块来描述该系统,以实现位置和速度的跟踪控制。然后利用MATLAB软件对这个非线性系统进行仿真。为了验证该模型的稳定性,根据两关节机械手仿真模型及选取的控制参数,采用S函数编写程序,并在Simulink中搭建仿真模型进行仿真。搭建该机械手仿真模型的选取以下模块:⑴标有“S-function”的模块;⑵标有“Sine Wave”模块;⑶标有“To Workspace”的模块;⑷标有“Mux”的模块;⑸标有“Demux”的模块。

搭建好仿真模型后,根据两关节机械手的数学模型及编写好的S函数程序进行封装。之后整个系统就可以由S函数模块来完成整个机械手的的操作。仿真结果如图2、图3所示。

从图3中我们可以很明显的看出,在仿真开始时刻,轨迹跟踪曲线误差比较大,随后关节1和关节2实际输出轨迹与期望输出轨迹几乎完全重合。说明设计的系统具有良好的跟踪性。从图4中可以看出关节1和关节2控制输入曲线变化规则扰动较小,说明控制器的输出比较稳定。

4 结论

本文针对两关节机械手的轨迹跟踪问题,通过已有的数学仿真模型,用matlab语言中的S函数编制仿真程序进行位置和速度跟踪试验。试验结果验证了,该模型能有效的克服机器人系统中的不确定因素的影响,提高系统对各种扰动、非线性因素的适应能力。该模型具有良好的稳定性,能实现机械手的位置和速度精确的控制。通过仿真结果可以看出这种方法的可行性。

[参考文献]

机械手论文 篇2

[关键词]锻造技术、全自动机械式

中图分类号:F426.4 文献标识码:A 文章编号:1009-914X(2017)04-0028-01

[Abstract]in the manufacturing industry, forging technology and equipment occupies a very important position, is widely used in automobile, aircraft, weapons and instruments. Forging industry, according to the size of the weight or the size of the equipment, the forging is divided into small and medium sized forgings and large more than 10 mn forging hydraulic press forging is called large forgings, such as power plant rotor, retaining ring, roll, container tube section, head, etc.. The internal quality of heavy forgings is strict and the technical difficulty is large. As a result, the quality and productivity of large forgings are one of the important symbols to measure the level of industrial development in a country

[Key words]forging technology, fully automatic mechanical

1.引言

冷锻工艺是一种精密塑性成形技术,具有切削加工无可比拟的优点,如制品的机械性能好,生产率高和材料利用率高,特别适合于大批量生产,而且可以作为最终产品的制造方法。在交通运输工具、航空航天和机床工业等行业具有广泛的应用。同时相比热锻工艺,冷锻工艺具有节能、高效等特点,与当前的能源政策以及国家发展战略是一脉相承的,因此,冷锻技术在近年来具有良好的发展势头,同时受到了国家的大力支持。当前汽车工业、摩托车工业和机床工业的飞速发展,为冷锻这一传统的技术的发展提供了原动力。冷锻技术在我国的起步虽然不算太晚,但发展速度与发达国家有很大的差距。到目前为止,我国生产的轿车上的冷锻件重量不足20kg, 相当于发达国家的一半,开发潜力很大,加强冷锻技术开发与推广应用是我国目前的一项紧迫任务。

2.全自动机械式冷锻生产线设计内容

是一台肘杆式大行程全自动机械式冷锻压力机以及辅助上料、涂油以及堆垛功能的机器人(以下简称机器人),并实现联机全自动控制,设计时需要注意以下几点:

(1)冷锻机本体结构设计,应用有限元方法和模态分析方法,对机身的动态精度与动态刚度进行研究,对机身结构进行动态性优化设计。采用独特的箱形焊接框架结构,增加了机械的高刚性,减少了了噪音和震动,有助于降低能耗,提高效率、生产精度和延长模具寿命,采用宽敞的侧面开口有利于配合自动化周边设备,达到锻压自动化的要求;

(2)机械手自动上料装置、自动送料涂油装置、定位举升装置、堆垛装置等的研制。

(3)冷锻机与机械手的联机设计:机械手与冷锻机同步运行方面的研究;

(4)冷锻控制系统设计,用于实现全自动冷锻生产线的工作流程,从机电一体化的角度将各个子系统有机集成在一起,通过整机调试实现预期目标。

(5)运行精度及整体性能稳定性的研究:以确保生产产品质量的精度与稳定性,提高模具使用寿命;

3.全自动机械式冷锻生产线关键技术要点

由于冷锻机工作繁重,经常处于长时间连续工作状态,加工精度及质量要求高,对设备的制造精度以及机械手配置系统的可靠性要求很高,同时机械手配置系统还要适应车间的恶劣环境。这些要求给整体生产线整体方案的拟定、机械手配置系统方案的选择带来很大的难度,其中关键问题有:

(1)冷锻机机架的优化设计:本体结构是冷锻机的重要组成部分,它不仅是冷锻机主要零件的装配基体,而且还要承受机器的全部工作载荷,本体结构的承载能力和变形大小及其动态性能将直接影响产品的精度及模具的使用寿命。因此本体机架的设计与优化将是冷锻机设计的关键。

(2)机械手装置本体及与冷锻机的联机运行设计方案:冷锻机在工作过程中,机械手需配合完成自动上料、移载、输出及翻转,这对机械手工作精度以及与冷锻机的同步性提出了较高要求,因此机械手配置系统的设计是冷镦机自动生产的关键。

(3)滑块运行精度保证:滑块的运行精度决定了产品加工质量的好坏,这也将是我们需要解决的问题关键。

4.技术特色和创新突破点

(1)采用低惯性、高扭力气压式分离器、刹车器,使启动平稳,降低被动运行机构的机械损失,提高了生产效率及重载、高频次运行情况下的稳定性。

(2)全自动化:本冷锻机通过侧面开口与机械手配合,实现前部位自动上料、自动涂油、自动移载,自动输出、翻转及堆垛功能,实现冷锻机生产线的全自动化。本机利用智能电脑数控系统控制,可实现单机单动、单机联动、多机单动及连动自动化。

(3)大载荷:冷锻机的公称力为2000T,可加工大型冷锻零件。冷锻机本体结构采用超声波振动处理及整体喷砂处理去应力焊接箱型结构,具有较大的刚性及强度,确保了设备性能的稳定性,可提高产品的精度以及延长模具的使用寿命。

5.结束语

由于冷锻产品可以实现少甚至无切削加工,可以直接用于装配,极大的提高了材料利用率及生产效率。因此,其应用面越来越广泛。随着我国大吨位冷锻机的生产技术水平的不断提高,将大大带动汽车产业、模具产业的发展,也为我国的节能减排作出极大的贡献。

参考文献

[1] 中国农业机械年鉴编辑委员会。中国农业机械年鉴2003-玉米收获机械化发展概况。北京:2004.

[2] 产业发展计财处。发展专用玉米生a机械化的必要性及对策。2003年山东省农机化工作调研文集。农业机械化管理办公室,2004年3月。

[3] 刘明祖,安建,张宝文。中华人民共和国农业机械化促进法释义。北京:法律出版社,2004年8月。

[5] 籍俊杰。对玉米收获机开发设计的几点思考。山西省玉米收获暨秸秆综合利用机械化学术研讨会论文集。忻州:山西省农业机械学会,2003.

[6] 刘振营。透视小麦、水稻联合收割机。农业机械,2004(1):14-19.

[10] 中国农业机械年鉴编辑委员会。中国农业机械年鉴2002-玉米收获机械化发展概况。北京:2003.

[12] 中国农业年鉴编辑委员会。中国农业年鉴(2003).北京:中国农业出版社,2003年12月。

[13] 董佑福。玉米收获机械化现状与发展战略。山西省玉米收获暨秸秆综合利用机械化学术研讨会论文集。忻州:山西省农业机械学会,2003.

机械手论文 篇3

关键词: 机械类课程教学 机械手抓取机构 ADAMS软件 仿真分析

在机械类课程教学中,往往由于在课堂上没有机械设备的实物,导致教学缺乏直观性。由于目前的一线教学条件及场所的限制,各学校也很难在课堂上配备机械设备的实物。鉴于此,我们可以借助现代化多媒体教学手段,充分利用机械设计、仿真等软件,从而改变现状。以机械手抓取机构的教学为例,在教学过程≮≯中灵活运用机械动力学仿真软件ADAMS来讲解其运动及受力特征,效果很好。

机械手(图1)是模仿人手工作的机械,它可将工件或工具按预定程序自动地送到所需要的位置。推广使用机械手,可以提高劳动生产率,保证产品质量。改善工人劳动条件是实现生产自动化的有效途径之一。抓取机构是机械手的主要部件之一,它直接用来抓取工件或操纵工具[1,2]。

由于工件或工具的形状、大小、重量等不同,抓取的方式也不同,抓取机构可分为手爪式、真空吸盘式和电磁吸盘式三种类型。本文以手爪式抓取机构作为研究对象,其结构如图2所示。研究的整体过程可分为力学计算,UG建模、装配、定义连杆,导入ADAMS,加约束添加驱动,运动仿真及后置处理,优化模型,等等[3]。

1.抓取机构力学分析

整个机构(图3(a))是沿中心平面对称的,所以在力学分析过程中取左连杆和左手指为对象(图3(b))。对左连杆对象而言为二力杆件[4],如图3(c)所示,沿杆线力平衡,则有公式:

2.仿真分析

2.1 虚拟样机技术及ADAMS软件

虚拟样机技术(Virtual Prototype Technology)是当前设计制造领域的一门新技术,涉及系统动力学、计算方法与软件工程学等学科。它利用软件建立机械设计系统的三维实体模型和力学模型,分析和评估系统的性能,从而为物理样机的设计和制造提供参数依据。

ADAMS(Automatic Dynamic Analysis of Mechanical System)软件是美国MDI公司开发的机械系统动力学仿真分析软件,它使用交互式图形软件环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷,以及计算有限元的输入载荷,等等[5,6]。本文的研究载体即为ADAMS软件。

2.2 模型建立

ADAMS软件在动力学分析及后置处理有着非常强大的功能,但其造型能力相对较差。对本文机构可采用专业三维设计软件完成,考虑和ADAMS做联合仿真时,优先选择UG软件。主要是这两款软件都支持Parosolid标准,且在UG的运动仿真模块任何一步骤均可以直接导出ADAMS的。cmd文件,可做到无缝对接。在做两者联合建模仿真时最好均采用英文界面,这样可大大减少错误[7]。

在UG中的抓取机构的造型如图4所示,导入ADAMS软件中的模型如图5所示。采用在UG中造型后,添加连杆(UG中把运动单元称为连杆)后导入ADAMS中,再在ADAMS中添加约束完成后续的仿真分析。

2.3 仿真分析

对其施加约束,进行动力学分析。首先在大地和机架之间添加固定副,使大地和机架形成一体。然后再分别添加各连杆之间的运动副:在导杆与机架之间添加移动副,导杆分别与左、右连杆之间添加旋转副,左连杆与左手指添加旋转副,右连杆与右手指之间添加旋转副。同时在左右连杆之间添加一个弹簧,实际物理样机是不存在这个弹簧,在此虚拟样机中的目的是测量抓取力量。最后在导杆与机架之间添加的移动副上添加驱动力驱动。暂定驱动力取700N。

在ADAMS的Build菜单建立模型中的两个角度α+β、α随时间的变化曲线,如图6所示。为后续的验证工作做准备。

(b)角度α随时间的变化曲线

图6 角度α+β、α随时间的变化曲线

在ADAMS的后置处理模块中生成弹簧力随时间的变化曲线,如图7所示,通过曲线查找得弹簧力为1663N。

利用ADAMS的Fuction Buider功能建立式(4)的表达式,并生成公式中f力曲线,如图8所示。通过曲线查找得弹簧力为1650 N。

通过对比发现,公式计算的输出力值1650N与虚拟样机仿真实验的输出力1663N基本重合,这其中误差还包含了样机的本身重力等影响。由此可见,仿真实验数据的可靠性很高,完全可用仿真分析来代替繁杂的计算过程,节省大量的设计计算时间。

3.优化

通过更改模型中机构的几何位置、尺寸等来细化模型。但从该虚拟样机的三维模型中,可清晰地看到机构左右成对称,若要对其细化,最好是更改沿其对称轴线上的几何关系。鉴于此,选择更改导杆与左右连杆的旋转副作用点位置,来细化模型。观察在不同位置时机构输出力的变化及跟随的两个角度α+β、α的变化。

在虚拟样机中设置导杆与左右连杆的旋转副作用点的竖直方向Y坐标为变量DV_1,以此来模型细化处理。分别得到五种不同坐标下的角度变化曲线如图9所示,弹簧力变化曲线如图10所示。

通过图10可以发现,随着坐标值增大输出力增大,由此可得出在其他条件不变的情况下,将导杆与左右连杆的旋转副作用点向上提高即可增大输出力,具体增大量可参照图10。

4.结语

机械手在工业生产中的运用非常广泛,所涉及的专业也相当多。本文仅对其中的一小部分抓取机构作虚拟样机分析,通过分析其理论力学上输入力与输出力的关系,在ADAMS中对其进行分析,发现虚拟样机实验中的力关系与理论力关系基本吻合,这样就对后续的研究分析提供了可靠性。在后续的研究开发过程中可对样机添加材料特性、惯性矩等,进一步与物理样机靠近。虚拟样机技术的应用大大缩短了抓取机构的设计研发周期,降低了产品生产成本,为抓取机构的设计提供了一个高效的开发途径[8]。

参考文献:

[1]孙恒,陈作模。机械原理[M].北京:高等教育出版社,2000.

[2]焦振学。先进制造技术[M].北京:北京理工大学出版社,2001.

[3]葛晓忠,詹葵华,钟克。基于UG的平面连杆机构的运动分析与应用[J].东华大学学报,2008,(6):332-334.

[4]哈尔滨工业大学理论力学教研室。理论力学[M].北京:高等教育出版社,2000.

[5]王国强,张进平,马若丁。虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.

[6]郑建荣。ADAMS虚拟样机技术入门及提高[M].北京:机械工业出版社,2005.

[7]范勤,何丽君。基于ADAMS的卧卷夹钳虚拟样机建模及动力学仿真[J].起重运输机械,2008,(5):55-58.

[8]谢方伟,李柄文。虚拟样机技术在减速器设计中的运用[J].煤矿机械,2008,(1):166-168.

机械手论文 篇4

关键词:萝卜采收;机械手;机械设计;控制设计

中图分类号:S225.92 文献标识码:A 文章编号:0439-8114(2015)09-2248-04

目前,中国农业机械化对农业生产的贡献率仅为17%,与发达国家存在很大的差距[1]。加速农业现代化进程,实施精确农业,广泛应用农业机器人,以提高资源利用率和农业产出率,降低劳动强度,提高经济效率已成为现代农业发展的必然趋势[2,3]。果蔬的采收方法有手工采收、机械辅助采收和机械化采收3种[4,5],世界萝卜的总产量为4 900万t/年,其中中国680万t/年,国内的采摘作业基本上都是手工进行的,收获作业劳动强度大。随着农业设施的发展和作业机械化的要求,对萝卜种植模式要求也越来越高,种植、管理和收获的劳动量也越来越大,亟需研究开发果蔬收获机器人,实现果蔬的机械化、自动化与智能化收获[6,7],为此,通过对萝卜种植与采收情况的调研,设计了一款萝卜采收机械手,以期为萝卜的自动化采收打下一定的基础。

1 萝卜采收机总体设计

根据萝卜采收过程的特殊性,为了提升萝卜采收的工作效率,所设计的是一种农业机械中的收获机械手,由执行系统、驱动系统和控制系统组成,其组成示意图如图1。

2 萝卜采收机械手关键部位机械设计

萝卜采收机械手的关键部位主要包括:1)手爪部位。手爪部位的主要工作是对萝卜进行抓取,为了减少手部由于惯性带来的不平稳性,此部位采用回转的形式,而手爪只用两根手指代替;2)手腕部位。手腕是连接手爪部位和手臂部位的关键地方,其主要工作是调整萝卜的方位,使萝卜被抓的时候可以进行摆动和回转,辅助萝卜采收过程的连贯性;3)手臂部位。手臂部位的主要作用就是支承,在采收过程中带动其他部件运转,并按照采收要求将萝卜搬运到指定的位置,设计时只需要实现手臂部位的升降与摆动即可。此次设计机械手应实现的功能:萝卜的挖掘、被挖掘的萝卜转移到指定位置,图2为机械手的机构形式简图。

2.1 机械手基本技术参数的选定

由于萝卜生长的自然环境决定了萝卜采摘过程中所需要的拔取力,故需要对不同地方生长的萝卜进行采收力的测定。把细绳系在萝卜的茎叶或者根茎部位,细绳的末端连接计力器材,多次读取并记录最大拉力。图3为湖北省长阳和沙洋两个地区分组测试萝卜拔取力的试验结果,现取5组数据平均值F=80 N,萝卜重量约为0.5kg,故重力G=5 N,摩擦系数f=0.2,夹紧力N=0.5 G/f,得N=12.5 N。

机械手手臂上下行程为500 mm,手腕旋转角度90°,手臂旋转角度90°,按照循环步骤安排确定每个动作的时间,从而确定各动作的运动速度。各动作的时间分配要考虑多方面的因素,包括总的循环时间的长短,各动作之间顺序是依序进行还是同时进行等[8],此次设计各动作依序进行,为保证萝卜的质量必须限制采摘速度及加速度,采摘速度初步定在小于1 m/s,此速度由各关节液压缸流量控制保证。

2.2 机械手末端执行机构的设计

手部是用来直接握持萝卜的部件,由于被握持萝卜的形状、尺寸大小、重量、表面状况等的不同,根据实际要求,设计采用夹钳式的手部结构。夹钳式手部结构由手指、传动机构和驱动装置三部分组成,它对抓取各种形状的物体具有较大的适应性,常见的传动机构往往通过滑槽、斜楔、齿轮齿条、连杆机构实现夹紧或放松[9]。由于抓取尺寸约为90 mm×240 mm的圆柱体,故采用夹钳式平面指形结构较为合适。

设计中机械手手爪在夹持萝卜时,其夹握力分析简图如图4。为了增大夹握力,采取以下两种方法:①设计铲刀角度170°,以增加手指和萝卜的接触面积;②增大手指和萝卜间的摩擦系数,为此采用较宽手指与萝卜接触,故此处f取0.2,将上述数值代入得:

N=■G=■×5=12.5N 公式(1)

式中,N为夹持萝卜时所需要的握力;G为工件重量转化的重力; f为摩擦系数。

考虑到在传送过程中还会产生惯性力、振动以及受到传力机构效率等的影响,故实际握力还应按公式(2)计算[10]:

N实≥N・■ 公式(2)

式中,η为手部的机械效率,一般取0.85~0.95;k1为安全系数,一般取1.2~2.0;k2为工作情况系数,主要考虑惯性力的影响,按公式(3)估算[10,11]:

k2=1+a/g公式(3)

其中,a为抓取工件传送过程中的最大加速度,g为重力加速度。

若取η=0.9,k1=1.5,k2按a=g/2计算,k2=1+a/g=1.5,则

N实≥N・■=12.5×■≈32 N 公式(4)

2.3 机械手腕部位的设计

机械手腕与机械手臂连接在一起,手臂运动结束后调整手腕的位置状态,以此来提高萝卜采收过程的拔取率。手腕部位的机械结构设计应该力求扎实紧凑,且转动惯性小。手腕也是末端执行部位与机械手臂之间的桥梁,处于手臂部位的前端,手爪的末端,因此其承受载荷的性能直接关系到萝卜的采收过程,在设计的过程中还要考虑其机械强度与刚度,并且要让其布局合理。结合设计要求,设计出腕部位的结构如图5,其为典型腕部结构中具有一个自由度的回转缸驱动的腕部结构,直接用回转液压缸驱动实现腕部的回转运动。

2.4 机械手臂部位的设计

机械手的手臂部位是实现机械手末端手爪进行大尺度位姿变换的关键部件,即把末端手爪部分移动到空间的指定地点。手臂部位的驱动形式主要有液压传动式和机械传动式两种,由于手臂部位的大尺度工作范围,以及工作中也需承受腕部和手爪部位的动力载荷,而且其姿态调整的灵活性影响到机械手的定位精度,因此手臂部位采用液压回转缸的形式实现手臂的大尺度旋转动作,如图6所示的手臂结构,采用一个回转液压缸,实现小臂的旋转运动。从A-A剖视图上可以看出,回转叶片用键和转轴连接在一起,定片和缸体用销钉和螺钉连接,压力油由左油孔进入和右油孔压出,以此来实现手臂部位的旋转。

3 萝卜采收机械手液压驱动系统设计及PLC控制设计

3.1 液压驱动系统的设计

从萝卜采收的工艺过程可以得出,机械手运动的时候液压系统中液压油的压力和流量不需要太高,设计使用电磁换向阀的液压回路可以较好地提高采收过程的自动化程度。从降低供油压力的角度来分析,机械手的液压系统可以采用单泵供油,而手臂部位的旋转和位姿的调整等相关机构采用并联供油。为了防止多缸的运动系统在运动的过程中产生干涉和保证运动过程中实现非同步运动或者是同步运动,油路中的换向阀使用中位“O”型换向阀,夹紧缸换向选用二位三通电磁阀,其他缸全部选用“O”型三位四通电磁换向阀[12,13]。机械手臂位姿调整的过程中要求行程可变,在液压缸的起动和停止的过程中也需要缓冲,但由于回转缸内空间狭小,且回转缸为小流量泵供油,故本系统没有在回转缸换向回路中采用缓冲回路,仅在大流量直动液压缸中采用缓冲回路。

在上述主要液压回路定好后,再加上其他功用的辅助油路(如卸荷、测压等油路)就可以进行合并,完善为完整的液压系统,并编制液压系统动作循环及电磁铁动作顺序表,其中液压原理图如图7。

3.2 PLC控制设计

为了让机械手工作时可靠且有较强的稳定性,控制部分的设计思路是让该机械手的部件顺序动作,所以,在任一时间该机械手都只有一个部件被驱动,而各个部件的运动方式和运动范围都是受其结构限制的[14,15]。PLC的状态流程简图如图8所示,机械手在自动运动状态时每一个周期需要完成以下动作:萝卜采摘开始时,机械手被设定在准备状态,第一步为手臂下降;下降完成后,手爪扎入地下指定深度,进行第二步手爪夹紧;为完成挖萝卜动作,手腕带动手爪及萝卜旋转90°;完成上述动作后,机械手臂向上提升完成拔去动作;手臂摆动90°,以实现对萝卜的转移;最后手臂回摆,手腕回摆,机械手回到初始状态。

4 小结

通过对机器人技术及机械手结构的分析,对萝卜采收的过程进行了研究,确定萝卜采收机械手的整体方案结构,设计萝卜采收机械手的关键结构。萝卜采收机械手能配合萝卜采收机依次完成萝卜的拔取、翻转、转位等动作,但该机械手在结构及工作性能的稳定性方面还需在田间进行试验,控制方案有待根据不同地区的种植情况进行优化。

参考文献:

[1] 方建军。移动式采摘机器人研究现状与进展[J].农业工程学报,2004,20(2):273-278.

[2] 何 蓓,刘 刚。果蔬采摘机器人研究综述[A].中国农业工程学会学术年会论文摘要集[C].北京:中国农业工程学会,2007.

[3] 赵 匀,武传宇,胡旭东,等。农业机器人的研究进展及存在的问题[J].农业工程学报,2003,19(1):20-24.

[4] 高焕文。农业机械化生产学(上册)[M].北京:中国农业出版社,2002.

[5] 李宝筏。农业机械学[M].北京:中国农业出版社,2003.

[6] 刘小勇。番茄收获机械手机构分析及双目定位系统的研究[D].哈尔滨:东北农业大学,2006.

[7] 李增强,章 军,刘光元。苹果被动抓取柔性机械手的结构与分析[J].包装工程,2011,32(15):14-17.

[8] 李建新。可编程序控制器及其应用[M].北京:机械工业出版社,2004.

[9] 姚璐璐。陆地钻机立柱式钻杆排放系统设计[D].兰州:兰州理工大学,2012.

[10] 陈 红。气动机械手系统设计[D].长春:长春理工大学,2010.

[11] 天津大学《工业机械手设计基础》编写组。工业机械手设计基础[M].天津:天津科学技术出版社,1985.

[12] 王 敏,王 华。PLC在液压实验台上的应用及仿真程序设计[J].长春工程学院学报(自然科学版),2002,3(3):57-59.

[13] JIMENEZA R,CERES R,PONS J L. A survey of computer vision methods for locating fruiton trees[J]. Transactions of the ASAE,2000,43(6):1911-1920.

[14] 陈宝江,葛田子,王建治。一种包装机械手及其控制的研究[J].包装工程,2014,35(7):90-94.

机械手论文 篇5

关键词:机械工程;教学;改革

中图分类号:G4文献标识码:A

引言

随着科学技术的发展,机械工程类学科与诸如信息技术、生命科学及材料科学等学科存在一定的技术交叉。这样的学科交叉有利于学科之间的融会贯通,提高各学科的创新能力,更好地适应科学技术发展所提出的新要求。但是也给机械工程类专业的教学与发展提出了新的挑战,传统的教学模式已不再适应现有的教学要求,新形势下更加注重学生专业技能及综合素质的现状。面对机遇与挑战并存的新发展要求,对机械工程类学科进行相关的教学改革显得尤为重要,尤其要大力提升机械设计课程的改革与创新力度,以此保障学生的实践动手能力得到充分地提升,适应社会对创新性人才的需求。

一、机械教学中存在的问题

(一)机械设计制造发展问题分析

从当前的机械设计制造的教学领域的发展情况来看,还有一些方面存在着问题有待解决,在对机械设计教学的内容来看,有各种机械设计的理论方法,以及让学生对简化理论公式的实际应用来对复杂工程问题进行解决,所以在实践性特征上比较突出,但由于受到多方面影响因素的影响,还是存在着相应问题。这些问题主要体现在单科的课程设计过程中存在着单调性,机械设计教学主要是让学生对机械设计进行模仿而非对学生主动思维的培养。学生只是按部就班的来完成任务,没有操作的新鲜感以及挑战性,这就不利于学生的实际问题能力的提升,对教学质量水平的提升也有着不利。

(二)教学要求不能满足市场的需求

职业院校多数都应用传统教材进行教学,主要就是对理论知识进行讲解,缺少理论和实践相结合的环节,而在就业市场中将职业院校走出的学生定位成是一线技术人员,对他们技能方面的需求要比理论知识高很多。我国现在职业院校中学生明显没有足够的实践经验,致使他们没有很强的动手能力,使社会对人才的需求得不到满足。

(三)教学设施不充足,教学需求得不到满足

职业院校在进行机械基础教学时,应该利用教学工具适当地安排一些实践环节,这样可以使教学内容更加的直观,同时也会提高学生的学习兴趣。可是,职业院校往往因为经济方面的原因,基础设施投入不足,在机械基础教学过程中没有添置充足的教学设备和实验器材,学生动手机会少,不能将理论和实践进行有机地结合,这样学生对教学内容的理解难度就会增加,学习兴趣也就不会非常的高。

二、完善机械教学改革

(一)优化改革教学模式实施

对教学模式实施优化改革,以往的机械设计基础课程在教学方法是以理论知识教学为主,实验课程以及课程设计为辅,这样学生的机械设计知识的掌握程度就不是很强,在培养目标的实现上也有着很大难度。所以这就需要对理论和实践相结合的教学模式进行深入探究,还需将教学体系以及内容加以改革,对于机械零件的设计内容比较丰富,学生在初学中就会觉得较为复杂化,在教学内容的选取上要结合学生的发展情况,选取比较典型又容易让学生理解的教学内容,在基本概念以及设计方法的讲解层面进一步加强,对既定公式涵义以及应用要重点强调。

(二)教学方法的改革与创新

(1)在机械设计实验课程中成立相关课题组,激励学生自主学习。实验教学时机械设计教学过程中的重要部分,在实验课程中可以实现学生理论知识转化为实践动手能力,有利于提高学生综合素质及应急处理能力。成立课题组是提高实验课教学质量的最为有效的手段之一。例如,教师在教学过程中针对讲授内容及学生的特点和掌握程度,成立相关课题小组,将机械设计实验进行汇总分类,形成层次分明,模块组合清晰,具有较强开放性的实验系统,确保学为学生提供更加充足的理论应用机会。

(2)开设富有特色的第二课堂。教师根据本学期知识结构特点及学生自身发展方向特点,在学期中后段开展具有一定特色的第二课堂,第二课堂的宗旨在于提高学生的实践动手能力,将理论知识应用于具体实践之中,以提升学生的创造能力。例如,教师定期组织班级内部学科知识竞赛活动,竞赛题目的选择主要集中在学科领域当前的创新技术设想及创新成果方面,以确保学生获取领域内的前沿知识。同时这种开放性的教学手段有利于提升学生探索知识的主动性,开发其创新潜能。或者学员可以在每学期组织一次创新计划集中营训练活动,在集中营开幕宣传时为学生提供几个方向的课题以供选择,学生根据自己的特长及兴趣爱好进行课题的选择与团队的组建。

(三)深化与企业的互动合作,增加学生对课程的感性认识

首先学校可以聘用企业的生产技术骨干榛械基础课程的专业顾问,邀请其到学校与老师和学生进行互动,将自己丰富的实践经验与师生们分享,还可以及时解答学生在学习中遇到的难题。此外,学校应该积极联系一些相关企业或单位,让学生能够到工厂实地参观和学习。还可以在确保安全的情况下,实际参与到生产过程当中,使得学生不仅对机械生产有了感性认识,还能联系生产实际,提高解决实际问题的能力。通过这种实际体验、实地学习的实践教学,让学生对很多模糊的知识会更加清晰明确,让学生对于知识的理解产生质的飞跃,同时培养了学生的学习兴趣,提高其动手能力。

三、 结束语

本文笔者对职业院校在机械基础课程教学方面存在的问题进行了分析,研究了目前就业市场对人才的需求,提出了教学内容和方式的改革方案。希望职业院校在讲解机械基础课程时能够联系实际来讲解理论课程,让学生积极主动地将理论学习与实习实践有机结合,为学生未来就业打下良好的基础。

参考文献:

[1]梁平。对中职机械教学改革策略的分析[J].考试周刊,2012,34:8.

机械手论文范文 篇6

【关键词】机械制图 计算机绘图 CAD 教学改革

【中图分类号】G712 【文献标识码】A 【文章编号】1674-4810(2012)04-0033-02

一 前言

在目前的高职院校中,机械制图与计算机绘图都是必须开设的重要基础课程。只有学好这两门基础课程,才能较好地提高学生自身的抽象思维能力,全面了解机械制图的一些基本原理,才能加强学生的识图和绘图以及通过计算机来辅助绘图的能力。在传统的教学当中,这两门课程并没有结合起来,这样分离的教学方式势必存在很多不足。比如这两门课程存在一些共同点,势必在教学过程中导致内容的重复,教学任务也加大,教学的效果也就相对减弱。如果将机械制图与计算机绘图教学的一体化结合来进行教学,将是从事相关教学工作者研究和探讨的重要课题,也是教学改革的需要。下面就这一问题并结合本人多年的教学经验来做一些探讨。

二 机械制图与计算机绘图一体化的必要性

具体可以从以下两个方面来探讨其一体化的必要性。

1.机械制图与计算机绘图课程现状

为适应高职院校教学改革的需要,机械制图课程内容做了调整,一些原有的内容被削减,但相关的作图原理知识要求并没有降低。这样的教学内容很难提高学生的识图能力,致使学生对作图的空间思维能力下降,很难达到预计的教学效果。而目前使用教学的计算机绘图课程――CAD是一门计算机辅助设计软件。这款软件的功能强大,应用也相当广泛。相对手工绘图来说,它可以更加快速、精确、美观地绘制出多种机械图形,在绘图效率和质量方面都具有绝对的优势。

2.机械制图与计算机绘图教学一体化的必要性

在以往传统的教学模式当中,机械制图与计算机绘图是两门相对独立的课程。在机械制图教学当中,教师往往只注重手工绘图技能的培养,很少与计算机绘图结合。而在计算机绘图教学当中,教师往往只注重如何教学生使用CAD软件。机械制图是计算机制图的基础,只有培养学生的识图能力、空间思维能力及平面与空间形体的转换能力,才能利用计算机来绘制出各种符合要求的机械图纸。但是,如果只是具备了机械制图的基础,只是采用手工制图,这样的制图效率就很低,难以符合当前科学技术发展的需要。因此,必须将机械制图与计算机绘图这两门课程有效地结合起来教学,才能达到理想的教学效果。

3.机械制制图与计算机绘图课程一体化的优势

通过以上的分析,可以得出机械制图与计算机绘图课程一体化的优势。(1)可以避免机械制图与计算机绘图课程独立教学导致的缺陷;(2)可以丰富教师的教学方法和手段,有利于将机械制图与计算机制图有效地衔接,既可避免机械制图的枯燥乏味,又可降低计算机制图的学习难度,从而提高学生的学习兴趣;(3)有利于培养学生阅读、理解机械图样的基本知识,加强他们掌握绘图方法和技能的能力。

三 实施械制制图与计算机绘图一体化教学的前提条件

1.充分了解机械制图与计算机绘图之间的关系

机械制图这门课程主要是研究绘制和阅读机械图样的原理和方法。学习它的目的主要在于能有效地掌握阅读和绘制机械图样的一些基本技能,培养空间思维想象能力,养成严谨的思维方式。而计算机绘图主要是通过CAD制图软件,利用机械制图的基础知识,通过各种指令来绘制图样,它们有着紧密的联系,两者缺一不可。

2.相应的硬件设施

硬件设置主要是指具备足够的计算机及多媒体教师,这样才能为一体化教学提供保障。要将机械制图和计算机制图结合起来教学,就必须要求有具备一定机械制图理论和计算机绘图实践能力的优秀教师资源。

3.合理的教学大纲

合理制定教学大纲是一体化教学的理论基础。这要求教师必须从全局出发合理制定教学大纲与计划,才能实现预定的教学目标。教学大纲的制定可分为两个阶段。第一阶段,重点制定机械制图的基本知识、基本方法和技能的教学,以便培养学生的空间想象能力及手工绘图能力。可以适当介绍一些基本的绘图和编辑知识,将一些基本的简单图形用CAD代替手工绘图,这样在结合两者的同时,也降低了学习难度。第二阶段,机械制图把识读零件图和装配图作为重点,CAD则侧重于绘制零件图和装配图以及绘图技巧的应用。

四 机械制图与计算机绘图一体化教学的实施探讨

1.将两门课程整合成一门课

要学习绘制和阅读机械图样的原理和方法,机械制图应该是最基础的一门课程,学生只有通过学好这门课程,才能为计算机制图提供重要保障。同样,计算机制图取代手工制图是科学技术发展的需要。所以,可以以实际应用为前提,将这两门课程整合成一门课,将原有的教材进行优化,同时教学大纲、教案等也要相应地做出调整。

2.多媒体授课与实验课相结合的教学模式

多媒体教室主要讲授机械制图的一些基本原理和理论知识,而实验室主要讲授CAD软件的使用和实践。通过这样的教学模式,可以将理论教学和实践教学有机地结合起来,不仅可以提高学生的理论水平,还可以加强学生的动手能力。因此,如何将学生所学的理论知识运用到实际当中去,就成了这种教学模式的关键所在。这就要求教学内容按照相应的知识模块来穿插讲授,使教学更加灵活。

3.手工绘图与计算机绘图相结合

随着计算机技术的不断发展,计算机绘图将取代手工绘图。但是,在学习的过程当中,并不能从一开始就使用计算机来绘图。手工绘图是基础,只有把手工绘图练习好,才能打下计算机绘图的基本功。再有,手工绘图也具有它相对的一些优势,比如在没有电脑的前提下,就需要通过手工绘图来解决一些实际问题。

4.通过训练提高学生的空间想象力

在学生掌握基本理论和CAD的大部分功能后,就可以让他们做一些难度适当的练习题。只有通过训练,才能提高学生的动手能力和创造能力,达到提高学生绘图、识图的能力的目的。这样不仅节省了学习时间,还加强了学生的空间想象力,让他们更加熟练地掌握计算机绘图的方法和技巧。将机械制图与CAD制图结合起来练习和讲解,不仅学生的学习兴趣浓厚,老师教学也变得轻松,从而可以达到事半功倍的效果。

五 总结

总之,单一的机械制图是一门比较枯燥的课程,必须将其与计算机制图有效地结合起来教学,才能提高学生的学习兴趣,提高教学质量。

参考文献

[1]章凤群。机械制图与CAD课程整合之我见[J].科学之友,2010(18)

[2]王小政。谈机械制图与CAD绘图的模块化整合教学[J].新课程学习,2010(4)

[3]杨军。浅谈机械制图与计算机绘图教学的有机融合[J].科技信息,2009(32)

机械手论文 篇7

关键词:机械手;自适应;滑模控制;MATLAB

引言

机械手是一种能够自动定位,用来搬运物体以完成在各个不同环境中工作的机器。目前机械手常采用电力驱动的方式,采用伺服电机控制,通过伺服电机,将电脉冲信号转换为相应的角位移或者直线位移,达到控制机械手运动的目的[2]。机械手的核心是控制系统,为了实现高精度快速跟踪和减少不确定性因素的干扰,必须采取合适的控制策略。除了外界的扰动和系统自身的不确定性,由于机械手各个关节处存在相互耦合,使得机械手的非线性特性十分明显,难以建立数学模型。文章介绍了通过把滑模控制和自适应理论相结合的方法对双关节机械手设计一种自适应滑膜控制器,以提高伺服精度,克服抖震问题,减少干扰误差,实现机械手高精度位置跟踪控制。

1 双关节机械手动力学方程

文章选用双关节机械手进行研究,对于双关节机械手,它的动力学方程为:

(1)

它是一种非线性微分方程,其中,q=[q1 q2]T,?子=[?子1 ?子2]T,H,C,G是与?琢、?茁、?着、?浊相关的矩阵。其中?琢、?茁、?着和?浊为与机械手物理参数相关的常数[6]。对上面的方程进行适当的变换,取a=[?琢 ?茁 ?着 ?浊]T,■=[■ ■ ■ ■]T。令■=■-a,由于a为常数向量,则 。则有

2 控制器的设计

一般的控制方法如PID控制,对线性系统模型能取得较理想的控制效果,但机械手系统是一个高耦合,不确定性很强的非线性系统,在实际控制过程中,如机械手负载发生变化时,传统的PID控制不能使系统达到较好的动态与稳态性能。因此,文章设计一种强鲁棒性的自适应滑模控制器,使系统能快速,准确的跟踪期望轨迹。

根据式(1),假设?琢、?茁、?着和?浊为未知常数,取误差■(t)=q(t)-qd(t),

定义■r=■d-?撰■, ,其中,?撰=■■,?姿1和?姿2均大于零。设计滑模函数为: (2),设计控制器为:?子=■(q)■r+■(q,■)■r+■(q)-Kds(3),其中,Kd为对角矩阵,由于H为正定阵,设计Lyapunov函数为:V=■sTHs+■■■?祝■其中?祝为大于零的对角矩阵[7]。将控制律式(3)代入上式,得■=sT(■■r+■■r+■-Kds-Cs)+■sT■s+■■?祝 根据机械手动力学方程的线性化特性,有: ,Y

依据前面方程分析计算可得。于是 设计

自适应律为: (4),则 ,从而可知当t∞时,■0。符合系统设计要求。

3 仿真结果分析

被控对象采用式(1),取?琢=6.7,?茁=3.4,?着=3.0,?浊=0,两关节指令分别为qd1=sin(2?仔t)和qd2=sin(2?仔t)。控制律和自适应律分别采用式(3)和式(4)。取?撰=■■,Kd=■■,?祝为单位对角矩阵,被控对象初始状态为[1 0 1 0],结果如图1和图2所示。

图1 第一个关节的角度和角速度跟踪

图2 第二个关节的角度和角速度跟踪

由图1和图2可以看出,系统在0.5s之前,跟踪信号与理想信号有一定的误差,这是信号跟踪的过程需要一定的时间,并且跟踪信号与理想信号之间的误差是成递减趋势,误差范围也是在可允许范围之内。0.5s之后,跟踪信号曲线就几乎与理想曲线重合,表明采用自适应滑模控制设计的控制器使系统响应速度有所提高,克服了系统的抖震问题,实现了高精度位置跟踪。

4 结束语

文章针对机械手耦合程度高,难于建立数学模型,且控制过程中容易产生振荡,控制精度有待提高等问题,对机械手的系统进行了详细的描述,建立了动力学方程。应用变结构控制理论和自适应控制理论相结合的方法,设计了一种应用于机械手双关节处控制的自适应滑模控制器,提高了其伺服精度。实验结果表明,自适应滑模控制器的应用使双关节机械手系统消除了系统的抖震,提高了系统鲁棒性,实现了高精度位置跟踪。

参考文献

[1]霍伟。机器人动力学与控制[M].北京:高等教育出版社,2005.

[2]范永胜,王岷。电气控制与PLC应用[M].中国:电力出版社,2005.

[3]高为炳。变结构控制的理论及设计[M].北京:科学出版社,1996.

[4]刘金琨。智能控制[M].北京:电子工业出版社,2006.

[5]王丰尧。滑模变结构控制[M].北京:机械工业出版社,1995.

[6]J.E.Slotine,W.P.Li. On the Adaptive Control of Robot Manipulators[J]. International Journal of Robotics Research,1987,6(3):49-59.

机械手论文 篇8

论文摘要:传统课程标准下的机械基础分为理论力学、材料力学、机械原理、机械零件四类,但它们偏重理论且与机械基础注重实践以及高职培养应用型人才的初衷不符。就新课程下的机械基础教学方法进行了研究。

作为高职机械类专业重要科目的机械基础,以往的课程是分为四门来学习的。即理论力学、材料力学、机械原理、机械零件。这四门课程的理论性和抽象性过强,且涉及面广,需要的学时多,其特点是偏重学术,却对实际应用方面指导不够,不能满足高职对应用型人才培养的要求。针对这一现状,提出了新课程标准。

一、新课程标准与传统教学标准的区别

1 学习方式上的区别

新课程标准与传统教学标准相比,在教学方式上倡导自主、探究、合作,它强调的是培养学生的创新精神和实践能力,像搜集和处理信息、获得新知、分析解决问题、交流合作的能力等。而这些都是传统教学标准所欠缺的,传统的说教式教学方式已经不能适应课改的要求。

2 教学手段上的区别

传统课程标准以课堂教学为基础,老师往往采取的是填鸭式、灌输式的教学手段。新课程标准的教学则强调学生在学习知识的过程中了解知识的形成过程并掌握其规律。

3 主观能动性的区别

新课程标准的一个最显著的特点就是强调探究式学习,要做到探究式学习,就要发挥学生的自主学习能力,以学生为中心,这样才能把学生的被动学习变成主动学习。而传统课程标准以老师为中心,学生的学习是在老师的要求下被动接受的,因此就不可能记得牢,经常是到了下课,学的东西又还给了老师。

二、新课程标准下的机械基础教学

1 传统课程标准的弊病催生新课程标准下的机械基础教学

由于传统课程下的机械基础耗时多,且学术性、理论性、抽象性过强,不适合高职培养应用型人才的需要,因此课程改革势在必行。新的课程标准实施后,机械基础成为机电设备维修与管理、汽车运用技术、机电一体化、数控技术、模具设计与制造等机电类专业的必修课,并具有实践指导意义。

2 新课程下的机械基础与传统课程下的机械基础比较

新课程下的机械基础只针对有所关联的专业进行开设,且在课程的设置上坚持改革、发展和创新,强调的是基础过程的课程体系建设,强调教师的教学科研能力,突出的是课程内容的实用性、先进性。并以操作性为重点。而传统课程下的机械基础的受众不明确,老师也多照本宣科,学生也缺乏实践的机会,使得本来很实用的学科变成了纸上谈兵。

三、新课程下的机械基础教学的切入点

1 实现应试教育向素质教育的转变

以前,机械基础的课程设计之所以强调理论教学,是为了适应考试的需要,学得好是一张卷子,学得不好也是一张卷子。学生学习机械基础就是为了应付考试,学习质量可想而知。新课程让机械基础这个实践性强且实用性佳的学科回归了本位,老师在教学实践中强调的是学生的参与,特别是动手能力的培养,继而使得学生的理论知识也得到了巩固。

2 摆脱对书本的依赖,以实践教学为主

之前的机械基础内容难、繁、偏、1日,老师教起来费神,学生听起来头疼。这还不说,由于师生都以书本为唯一的获知来源,使得书上的一些理论缺乏现实参考,有的学生,老师已讲得声嘶力竭,他还如丈二和尚摸不着头脑。

3 注重扮演角色性质的变化

如果把机械基础比作是一部电影剧本,里面有很多台词,以往是老师作为演员,按剧本里的台词把要说的话给念白出来,学生只要当观众,进行附和就行了。但是新课程则要求将老师和学生的角色换过来,变为学生当演员,让老师来当观众,同时还要对学生的演技进行评判。特别是在实验课或是校外实践时,更是要以学生为主角,以他们真正掌握所学知识为标准。

四、新课程下的机械基础学时设置及目的

根据新课程标准的要求,不妨将以往涉及面广的理论知识进行模块化分类,分为基础知识、机械传动、机械零部件三大模块。对于基础部分以理论讲述为主,课时不宜过多。而其他部分则分为两种情况,既有理论,又有实践的,则课时均分;以实践为主的,适当增加实验课。这样一来,主题就得到了突出,老师实现了教学目的,学生达到了学习目的。

新课程下的机械基础教学强调的是轻理论、重实践,轻说教、重自学。因此,在教学方式和手段上要适应课改的要求,在教学内容上务实且要学会运用现代教学技术,将多媒体教学等形式引入课堂,并在实践教学中逐步形成教学体系,这样才能使得机械基础教学不断推向前进。

参考文献

机械手论文 篇9

关键词:采摘机械手臂;苹果;结构设计

引言

水果采摘季节性强、费用高且劳动量大[1]。加速农业现代化进程,实施“精确”农业,广泛应用农业机器人,提高资源利用率和农业产出率,降低劳动强度,提高经济效率将是现代农业发展的必然趋势。研究采摘机械人,对于降低人工劳动强度和采摘成本、保证水果适时采收,具有重大的意义[2]。我国从上世纪70年代开始研究水果蔬菜类的采摘机械,并且也逐渐起步,如上海交通大学已经开始了对黄瓜采摘机器人的研制[3],浙江大学对番茄采摘机器人进行了结构分析与设计的优化[4],中国农业大学对采摘机器人的视觉识别装置进行了研究[5]。目前,我国研究的采摘机器人还有西红柿、橘子、草莓、荔枝和葡萄采摘机器人等[6-8]。文章对苹果采摘机械手臂进行选型,进一步进行详细结构设计,最后对设计结果进行试验验证。

1 机械人机构选型及自由度的确定

由于采摘机械人的作业对象是苹果,质量轻,体积小,故而可选择较为简单、灵活、紧凑的结构形式。

根据机械人手臂的动作形态,按坐标形式大致可将机械人手臂部分分为以下四类[9]:直角坐标型机械手;圆柱坐标型机械手;球坐标(极坐标)型机械手;多关节型机械手。采摘机械臂的结构型式选取主要取决于机械人的活动范围、灵活性、重复定位精度、持重能力和控制难易等要求。以上四种型式,它们的活动范围和灵活度逐渐增大。经过对苹果采摘空间的研究,结果表明,苹果树树冠和底部的苹果分布极少,大多分布在树冠中部,大约有80%以上的苹果分布在距地面垂直高度1-2m、距树干左右方向1-2m的空间范围内,且阴阳两面的苹果分布率并无明显的差异。这就要求采摘机械手应当具有较大的工作空间,因此选用多关节型机械手较为合适,且其占地面积较小,更加适合苹果采摘作业。

实际中,苹果生长位置随机分布,这就要求机械臂的末端执行器能够以准确的位置和姿态移动到指定点,因此,采摘机械人还应具有一定数量的自由度。机械臂的自由度是设计的关键参数,其数目应该与所要完成的任务相匹配。一般来说,自由度数量越多,机械臂的灵活性、避障能力越好,通用性也越广,但增加一个自由度就相当于增加了一级驱动,会使得机器人的成本上升,而对于农业机器人而言,成本高将会大大的减缓其机械商品化实用化进程,同时增加自由度会相应增加机器人的控制难度,降低机器人的可靠性。综合考虑,将自由度数目定为六个,这样不仅能够使得末端执行器具有较为完善的功能,而且到达采摘空间中的任意位置,而且不会出现冗余问题。

2 采摘机械臂工作原理

图1 机械人结构简图

图1是本次设计的球类水果采摘机械人的结构简图。该结构为六自由度机构,可划分为底座、大臂、小臂、腕部和手五个部分。机械臂的底座通过舵机带动传动系统实现各个部分之间的相对转动和旋转。其中的各个转动和旋转均是通过电机驱动螺旋丝杆来实现。该设计机械臂的传动如下:(1)底座旋转。确定与底座平面互相垂直的目标采摘物所在的平面。(2)大臂转动。移动至目标采摘位置附近的上方或下方。(3)小臂转动。将采摘机械手送至目标采摘物的附近。(4)手腕转动及旋转。调整机械手末端采摘机构的姿态,使其处于一个合适的位置,保证采摘任务能够合理完成。(5)手夹紧放松,完成对目标采摘物的采摘任务。此外,将末端执行器设计为关节型的两只手指,通过舵机6(舵机分配情况见图2)、齿轮的啮合及连杆机构实现对目标采摘物的夹紧与放松。

由以上分析得出:机械手的空间位姿由各个关节的空间坐标来决定,即当机械手的各个舵机的坐标确定的时候,就可以确定机械手的空间位姿。而决定舵机坐标的因素就是臂长及臂的转动角度,而在这两个参数中,设计结束后臂长是确定的常量,角度为变量。在模型当中,舵机1、2的相对位置固定不变,控制末端执行器的舵机6用来调整手的姿态,因此可以先忽略舵机1、6,将舵机2轴线中心的位置设为坐标系原点。

图2 舵机分配方框图

3 机械臂结构设计

首先用Pro/E软件中的零件模块对机械人各个零件进行绘制,然后再对零件进行自下而上的装配,以及进行零件图及装配图的绘制。大臂、小臂和腕部、机械手零件图以及装配图分别见图3、图4、图5、图6和图7(单位均为mm)。

4 试验台搭建与抓取效果实验

根据零件图及装配图进行试验台搭建。由于设计尺寸较大,故将整体尺寸缩小4倍来进行搭建。实物如图8所示。通过操作上位机控制软件指令信号,可给伺服舵机控制器发送控制指令信号,从而实现机械人在空间中精确作业。试验结果表明:机械人能够较为平稳、准确地对目标物进行夹取、移动、放置等任务。证明设计合理,试验台搭建正确。

5 结束语

通过对水果采摘作业的分析,设计了一套六自由度关节型采摘机械人。其运动范围覆盖了水果果实的分布范围,末端执行器能够执行对水果的采摘任务。在采摘过程中,只需对舵机进行控制,在一定程度上降低了控制的难度和复杂性。当然,设计中也存在不足,例如缺少对果实的切割装置,而且对葡萄等较小、较软的果实采摘技术不成熟,有待进一步的改善。

参考文献

[1]汤修映,张铁中。果蔬收获机器人研究综述[J].机器人,2005,27(1):90-96.

[2]张文莉。农业工程导论论文[D].江苏大学,2011.

[3]曹其新,吕恬生,永田雅辉,等。草莓拣选机器人的开发[J].上海交通大学学报,1999,33(7):880-884.

[4]梁喜凤,苗香雯,崔绍荣,等。果实采摘机械手机构设计与工作性能分析[J].农机研究所,2004(2):133-136.

[5]周天娟,张铁中。果蔬采摘机器人技术研究进展和分析[J].农业机械学报,2006,11:38-39.

[6]邹湘军,金双,陈燕,等。基于Modelica的采摘机械手运动控制与建模[J].系统仿真学报,2009,21(18):5882-5885.

[7]马履中,杨文亮,王成军,等。苹果采摘机器人末端执行器的结构设计与试验[J].农机化研究,2009,31(12):65-67.

[8]宋健。茄子采摘机器人结构参数的优化设计与仿真[J].机械设计与制造,2008,46(6):166-168.

[9]马江。六自由度机械臂控制系统设计与运动学仿真[D].北京工业大学,2009.

作者简介:郑爽爽(1994-),女,河南许昌人。

机械手论文 篇10

关键词:气动机械手,结构优化,结构设计

前 言:

气动机械手能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。气动机械手具有结构简单、重量轻、动作迅速、可靠、节能、不污染环境、可实现无级调速、易实现过载保护等优点,特别适用于汽车制造业、食品和药品包装行业、化工行业、精密仪器制造业和军事工业等。

在现代工业技术应用的气动机械手能够实现4个自由度的运动,其各自的自由度的驱动全部由气动肌肉来实现。最前端的气爪抓取物品,通过气动肌肉的驱动实现各自关节的转动,使物品在空间上运动,根据合理的控制,最终实现机械手的动作要求。气动机械手回转臂的设计主要是选择合适的控制阀,设计合理的气动控制回路,通过控制和调节各个气缸压缩空气的压力、流量和方向来使气动执行机构获得必要的力、动作速度和改变运动方向,并按规定的程序工作。

1.气动机械手的原理

气压传动机械手是以压缩空气的压力来驱动执行机构运动的机械手。它巧妙地应用力的平衡原理,使操作者对重物进行相应的位移,就可在空间内平衡移动定位负荷。重物在提升或下降时形成浮动状态,靠气路实现微重力的物料位移,操作力受工件重量影响。无需熟练的点动操作,操作者用手推拉重物,就可以把重物正确地放到空间中的任何位置,或者通过操作台控制工件的位移可完成以下动作:送料、预夹紧、手臂上升、手臂旋转、小臂伸长、手腕旋转。

图1:气动机械手系统工作原理图

气压传动机械手的优点:(1)不用增速机构就能获得较高的运动速度,这是简易机械手的一项主要性能,其可适应各种快速自动搬运的工作。(2)能源方便,工厂都有压缩工作站。(3)空气泄漏基本无害。(4)适应易爆、易燃等恶劣环境。

(5)结构、保养都简单,成本低。(6)可将直线风缸和摆动风缸做成手臂的一部分,结构简单,刚性好。

2.气动机械手的主要部件和设计要求

根据模块化设计思想,机械手的各模块化机构分别为:立柱、手臂、小臂、手腕和手爪几个部分。论文选择圆柱坐标式机械手,木设计的机械手具有3个自由度:手臂伸缩;机身回转;机身升降。木设计的机械手主要由3个大部件和3个气缸组成:手部,采用一个气爪,通过机构运动实现手爪的运动。臂部,采用直线缸来实现手臂的伸缩。机身,采用一个直线缸和一个回转缸来实现手臂升降和回转。

机械手的手部是机械手上承担抓取工件的机构,由于被抓取物件(炮弹)的形状近似于圆台,所以,其手爪采用特殊的V字型结构,即手爪的内表而设计成与圆台斜度相同的斜而,即保证了抓取的稳定又不会因“线接触”而影响炮弹的表而质量。通过对平衡气缸内空气压力快速精确的调节,实现对某一重量范围内工件的实时平衡状态。机械手可选择定制功能:平衡系统;垂直提升;负载平衡。设备回转关节设置刹车系统,可在任意所需要的位置刹车,使机械手可以长期或定期保持需要的状态。翻转90度、翻转180度和翻转任意角度(MAX270°);断气保护:设备被意外断气时,设备上的储气罐装置可保证工人正常完成一个循环工作,然后进入刹车状态指不功能:负载指示、到位指示。误操作保护功能:工件在悬空时不可被释放。人性化操作手柄:控制按钮和人性化防滑手柄集成一体,让操作人更便捷操纵机体。工件表面保护:夹具接触工件部位装置保护物件,保证工件表而不会被刮伤。高效率工作:夹具设置抓取导向,让工件的拾取更高效。

控制系统可根据动作的要求,设计采用数字顺序控制。它首先要编制程序加以存储,然后再根据规定的程序,控制机械手进行工作程序的存储方式有分离存储和集中存储两种。分离存储是将各种控制因素的信息分别存储于两种以上的存储装置中,如顺序信息存储于插销板、凸轮转鼓、穿孔带内;位置信息存储于时间继电器、定速回转鼓等;集中存储是将各种控制因素的信息全部存储于一种存储装置内,如磁带、磁鼓等这种方式使用于顺序、位置、时间、速度等必须同时控制的场合,即连续控制的情况下使用。

3.机械手回转臂的结构优化措施

为防止手臂沿伸缩方向轴线转动、加大承载能力,以及提高运动精度,必须设有导向装置。伸缩手臂的导向装置需根据伸缩手臂的安装形式、结构及负荷等条件来确定。用的有单导向杆和双导向杆。在气动伺服系统中要实现高精度定位比较困难,将旋转气缸安装在底板上,实现机械手的回转运动,使机械手向左或向右摆动。机械手末端执行器的水平伸缩运动和竖直升降运动各由一个气缸控制,即以最简单的形式,在完全伸出和回缩位置之间进行切换。

具体优化措施:第一,由于最大应力出现在齿轮的齿根处,所以,为了减小应力给齿轮寿命带来的影响,应采用热处理方法增强齿根强度。第二,由于最大变形出现在手爪受压的地方,长期使用定会加剧磨损,从而间接影响在检测平台上的位置。因此,对于下半部分手爪结构进行热处理,以增强其耐磨性和强度。

一键复制全文保存为WORD
相关文章