移动通信论文(精选5篇)

《移动通信论文(精选5篇)》由精心整编,希望在【移动通信论文】的写作上带给您相应的帮助与启发。

移动通信论文 篇1

关键词:第三代移动通信3GIMT-2000WCDMA-FDD/TDDcdma2000TD-SCDMA

经过多年的努力,第三代移动通信(3G)的建设已经指日可待,3G也已经从专家口中的一个术语,变为社会大众口中的一个常用词。

第一代移动通信系统{如AMPS和TACS等}是采用FDMA制式的模拟蜂窝系统,其主要缺点是频谱利用率低、系统容量小、业务种类有限,不能满足移动通信飞速发展的需要。

第二代移动通信系统(如采用TDMA制式的欧洲GSM/DCS1800,北美IS-54和采用CDMA制式的美国IS-95等)则是数字蜂窝系统。虽然其容量和功能与第一代相比有了很大的提高,但其业务主要限于话音和低速率数据(9.6kb/s),远不能满足新业务和高传输速率的需要。

第三代移动通信系统简称3G系统,它最早是国际电联(ITU-R)于1985年提出的,当时命名为未来公众陆地移动通信系统(FPLMTS)。由于当时预期该系统在2000年使用,并工作在2000MHZ频段,故于1996年正式改名为IMT-2000。第三代移动通信系统大致目标是全球化、综合化和个人化。全球化就是提供全球海陆空三维的无缝隙覆盖,支持全球漫游业务;综合化就是提供多种话音和非话音业务,特别是多媒体业务;个人化就是有足够的系统容量、强大的多种用户管理能力、高保密性能和服务质量。

一、IMT-2000的技术要求和提供的业务

1、IMT-2000的要求

为实现上述目标,对其无线传输技术提出了以下要求。

(1)高速传输以支持多媒体业务

①室内环境至少2Mbit/s;

②室外步行环境至少384kbit/s;

③室外车辆运动中至少144kbit/s。

(2)传输速率能够按需分配

(3)上下行连路能适应不对称需求

移动通信从第二代过渡到第三代的主要特征是网络必须有足够的频率,不仅能提供话音、低速率数据等业务,而且具有提供宽带数据业务的能力。

2、IMT-2000提供的业务

根据ITU的建议,IMT-2000提供的业务类型分为6种类型

(1)话音业务:上下行链路的信息速率都是16kbit/s,属电路交换,对称型业务。

(2)简单消息:是对应于短信息SMS的业务,它的数据速率为14kbit/s,属于分组交换。

(3)交换数据:属于电路交换业务,上下行数据速率都是64kbit/s。

(4)非对称的多媒体业务:包括中速多媒体业务,其下行数据速率为384kbit/s、上行为64kbit/s。

(5)高速多媒体业务:其下行数据速率为2000kbit/s,上行为128kbit/s。

(6)交互式多媒体业务:该业务为电路交换,是一种对称的多媒体业务,应用于高保真音响,可视会议,双向图像传输等。

3G的目标是支持尽可能广泛的业务,理论上,3G可为移动的终端提供384kbit/s或更高的速率,为静止的终端提供2.048Mbit/s的速率。这种宽带容量能够提供现在2G网络不能实现的新型业务。未来也许会出现一些现在无法想像的业务。

二、IMT-2000系统的组成

IMT-2000系统构成如图所示,它主要由四个功能子系统构成,即核心网(com)、无线接入网(RAN)、移动台(MT)和用户识别模块(UIM)组成。分别对应于GSM系统的交换子系统(NSS)、基站子系统(BSS)移动台(MS)和SIM卡。

从图中可以看出,ITU定义了4个标准接口,如下所述。

(1)网络与网络接口(NNI):由于ITU在网络部分采用了“家族概念”,因而此接口是指不同家族成员之间的标准接口,是保证互通和漫游的关键接口。

(2)无线接入网与核心网之间的接口(RANcom),对应于GSM系统的A接口。

(3)无线接口(UNI)

(4)用户识别模块和移动台之间的接口(UIMMT)。

与第二代移动通信系统相似,第三代移动通信系统的分层方法也可用三层结构描述,但第三代系统需要同时支持电路型业务和分组型业务,并允许支持不同质量、不同速率业务,因而其具体协议组成较第二代系统要复杂。

三、第三代移动通信的主流制式

在标准征集的过程中,世界各国的电信制造商都积极准备,投入了大量的人力和物力进行开发和研究,我国也积极探索提出第三代移动通信系统标准提案。经过一段时间的筛选,一些国家提出的标准先后出局,剩下了几个影响比较大的标准草案,包括由欧洲和日本支持的WCDMA标准,美国支持的cdma2000标准,以及由我国大唐集团提出的TD-SCDMA标准等。在技术上,由于各个标准草案都是理论上的系统,没有哪个系统占有绝对的优势,而在政治上,各个国家和地区竞争互不相让,各公司之间的竞争到了白热化的阶段。我国提出的标准———TD-SCDMA在这一过程中经受住了严峻的考验。一方面,我国的TD-SCDMA在技术上有着巨大的优势:第一,TD-SCDMA有最高的频谱利用率。因为我国标准是一种时分双工(TDD)的移动通信系统,只用一段频率就可完成通信的收信和发信,而WCDMA和cdma2000采用的都是频分双工(FDD)的移动通信系统,需要两段不同的频率才能完成通信的收信和发信。第二,TDSCDMA采用了世界领先的智能天线技术。基站天线可以自动追踪用户手机的方向,使通信效率更高,干扰更少,设备成本更低。第三,我国政府和运营商给予我国提出的3G标准以巨大的支持,同时,大唐集团也采取了广泛的联合策略,使这一起步较晚的标准得到了广泛的支持。经过艰苦的努力,2000年5月5日,TD-SCDMA被ITU正式批准为国际标准,与欧洲和日本提出的WCDMA以及由美国提出的cdma2000标准同列三大标准的行列。之后,TD-SCDMA又被3GPP(第三代合作伙伴)组织正式接纳,成为全球第三代移动通信网络建设的选择方案之一。

在全球,经国际电联(ITU)确认的三大3G主流标准分别为:由GSM延伸而至的WCDMA;由CDMA演变发展的CDMA2000;中国大陆大唐电信和德国西门子合作开发的全新标准TD-SCDMA。

四、我国3G产业发展现状

我国于2004年实现了在TD-SCDMA终端核心芯片领域的群体突破。从2004年4月至今,陆续有展讯、凯明、T3G、大唐/ADI、重邮信科相继推出了终端基带芯片,目前已开发的芯片经过各项测试,设计达到预期目标。截至2006年底,我国已经有基于上述几款芯片的数十款终端、数据卡研发成功。伴随着TD-SCDMA终端芯片领域的群体突破,我国TD-SCDMA终端产品的研发及产业化工作也步入了快车道。经过TDSCDMA产业化专项测试的检验,这些终端的通话功能已经基本稳定,目前正在进行复杂环境及切换、数据业务的测试。

参考文献

移动通信论文 篇2

第四代移动通信技术的概念可称为宽带接入和分布网络,具有非对称的超过2Mbit/s的数据传输能力。它包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。第四代移动通信标准比第三代标准拥有更多的功能。第四代移动通信可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时、数据采集、远程控制等综合功能。此外,第四代移动通信系统是集成多功能的宽带移动通信系统,是宽带接入IP系统。目前正在开发和研制中的4G通信将具有以下特征:

(一)通信速度更快

由于人们研究4G通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信的特征莫过于它具有更快的无线通信速度。专家预估,第四代移动通信系统的速度可达到10-20Mbit/s,最高可以达到100Mbit/s。

(二)网络频谱更宽

要想使4G通信达到100Mbit/s的传输速度,通信运营商必须在3G通信网络的基础上对其进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍。

(三)多种业务的完整融合

个人通信、信息系统、广播、娱乐等业务无缝连接为一个整体,满足用户的各种需求。4G应能集成不同模式的无线通信——从无线局域网和蓝牙等室内网络、蜂窝信号、广播电视到卫星通信,移动用户可以自由地从一个标准漫游到另一个标准。各种业务应用、各种系统平台间的互联更便捷、安全,面向不同用户要求,更富有个性化。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端。

(四)智能性能更高

第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多难以想象的功能。例如,4G手机将能根据环境、时间以及其他因素来适时提醒手机的主人。

(五)兼容性能更平滑

要使4G通信尽快地被人们接受,还应该考虑到让更多的用户在投资最少的情况下轻易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从2G、3G平稳过渡等特点。

(六)实现更高质量的多媒体通信

4G通信提供的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频的信道传送出去,为此4G也称为“多媒体移动通信”。

(七)通信费用更加便宜

由于4G通信不仅解决了与3G的兼容性问题,让更多的现有通信用户能轻易地升级到4G通信,而且4G通信引入了许多尖端通信技术,因此,相对其他技术来说,4G通信部署起来就容易、迅速得多。同时在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,这样就能够有效地降低运营成本。

二、4G移动通信的接入系统

4G移动通信接入系统的显著特点是,智能化多模式终端(multi-modeterminal)基于公共平台,通过各种接技术,在各种网络系统(平台)之间实现无缝连接和协作。在4G移动通信中,各种专门的接入系统都基于一个公共平台,相互协作,以最优化的方式工作,来满足不同用户的通信需求。当多模式终端接入系统时,网络会自适应分配频带、给出最优化路由,以达到最佳通信效果。目前,4G移动通信的主要接入技术有:无线蜂窝移动通信系统(例如2G、3G);无绳系统(如DECT);短距离连接系统(如蓝牙);WLAN系统;固定无线接入系统;卫星系统;平流层通信(STS);广播电视接入系统(如DAB、DVB-T、CATV)。随着技术发展和市场需求变化,新的接入技术将不断出现。

不同类型的接入技术针对不同业务而设计,因此,我们根据接入技术的适用领域、移动小区半径和工作环境,对接入技术进行分层。

分配层:主要由平流层通信、卫星通信和广播电视通信组成,服务范围覆盖面积大。

蜂窝层:主要由2G、3G通信系统组成,服务范围覆盖面积较大。

热点小区层:主要由WLAN网络组成,服务范围集中在校园、社区、会议中心等,移动通信能力很有限。

个人网络层:主要应用于家庭、办公室等场所,服务范围覆盖面积很小。移动通信能力有限,但可通过网络接入系统连接其他网络层。

固定网络层:主要指双绞线、同轴电缆、光纤组成的固定通信系统。

网络接入系统在整个移动网络中处于十分重要的位置。未来的接入系统将主要在以下三个方面进行技术革新和突破:为最大限度开发利用有限的频率资源,在接入系统的物理层,优化调制、信道编码和信号传输技术,提高信号处理算法、信号检测和数据压缩技术,并在频谱共享和新型天线方面做进一步研究。为提高网络性能,在接入系统的高层协议方面,研究网络自我优化和自动重构技术,动态频谱分配和资源分配技术,网络管理和不同接入系统间协作。提高和扩展IP技术在移动网络中的应用;加强软件无线电技术;优化无线电传输技术,如支持实时和非实时业务、无缝连接和网络安全。

三、4G移动通信系统中的关键技术

(一)定位技术

定位是指移动终端位置的测量方法和计算方法。它主要分为基于移动终端定位、基于移动网络定位或者混合定位三种方式。在4G移动通信系统中,移动终端可能在不同系统(平台)间进行移动通信。因此,对移动终端的定位和跟踪,是实现移动终端在不同系统(平台)间无缝连接和系统中高速率和高质量的移动通信的前提和保障。二)切换技术

切换技术适用于移动终端在不同移动小区之间、不同频率之间通信或者信号降低信道选择等情况。切换技术是未来移动终端在众多通信系统、移动小区之间建立可靠移动通信的基础和重要技术。它主要有软切换和硬切换。在4G通信系统中,切换技术的适用范围更为广泛,并朝着软切换和硬切换相结合的方向发展。

(三)软件无线电技术

在4G移动通信系统中,软件将会变得非常繁杂。为此,专家们提议引入软件无线电技术,将其作为从第二代移动通信通向第三代和第四代移动通信的桥梁。软件无线电技术能够将模拟信号的数字化过程尽可能地接近天线,即将A/D和D/A转换器尽可能地靠近RF前端,利用DSP进行信道分离、调制解调和信道编译码等工作。它旨在建立一个无线电通信平台,在平台上运行各种软件系统,以实现多通路、多层次和多模式的无线通信。因此,应用软件无线电技术,一个移动终端,就可以实现在不同系统和平台之间,畅通无阻的使用。目前比较成熟的软件无线电技术有参数控制软件无线电系统。

(四)智能天线技术

智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,能满足数据中心、移动IP网络的性能要求。智能天线成形波束能在空间域内抑制交互干扰,增强特殊范围内想要的信号,这种技术既能改善信号质量又能增加传输容量。

(五)交互干扰抑制和多用户识别

待开发的交互干扰抑制和多用户识别技术应成为4G的组成部分,它们以交互干扰抑制的方式引入到基站和移动电话系统,消除不必要的邻近和共信道用户的交互干扰,确保接收机的高质量接收信号。这种组合将满足更大用户容量的需求,还能增加覆盖范围。交互干扰抑制和多用户识别两种技术的组合将大大减少网络基础设施的部署,确保业务质量的改善。

(六)新的调制和信号传输技术

在高频段进行高速移动通信,将面临严重的选频衰落(frequency-selectivefading)。为提高信号性能,研究和发展智能调制和解调技术,来有效抑制这种衰落。例如正交频分复用技术(OFDM)、自适应均衡器等。另一方面,采用TPC、Rake扩频接收、跳频、FEC(如AQR和Turbo编码)等技术,来获取更好的信号能量噪声比。

四、OFDM技术在4G中的应用

若以技术层面来看,第三代移动通信系统主要是以CDMA为核心技术,第四代移动通信系统技术则以正交频分复用(OrthogonalFreqencyDivisionMultiplexer,OFDM)最受瞩目,特别是有不少专家学者针对OFDM技术在移动通信技术上的应用,提出相关的理论基础。例如无线区域环路(WLL)、数字音讯广播(DAB)等,都将在未来采用OFDM技术,而第四代移动通信系统则计划以OFDM为核心技术,提供增值服务。

在时代交替之际,旧有系统之整合与升级是产业关心的话题,目前大家谈的是GSM如何升级到第三代移动通信系统;而未来则是CDMA如何与OFDM技术相结合。可以预计,CDMA绝对不会在第四代移动通信系统中消失,而是成为其应用技术的一部份,或许未来也会有新的整合技术如OFDM/CDMA产生,前文所提到的数字音讯广播,其实它真正运用的技术是OFDM/FDMA的整合技术,同样是利用两种技术的结合。因此未来以OFDM为核心技术的第四代移动通信系统,也将会结合两项技术的优点,一部份将是以CDMA的延伸技术。

五、结束语

对于现在的人来说,未来的4G通信的确显得很神秘,不少人都认为第四代无线通信网络系统是人类有史以来最复杂的技术系统。总的来说,要顺利、全面地实施4G通信,还将可能遇到一些困难。

首先,人们对未来的4G通信的需求是它的通信传输速度将会得到极大提升,从理论上说最高可达到100Mbit/s,但手机的速度将受到通信系统容量的限制。据有关行家分析,4G手机将很难达到其理论速度。

其次,4G的发展还将面临极大的市场压力。有专家预测,在10年以后,2G的多媒体服务将进入第三个发展阶段,此时覆盖全球的3G网络已经基本建成,全球25%以上的人口使用3G,到那时,整个行业正在消化吸收第三代技术,对于4G技术的接受还需要一个逐步过渡的过程。

因此,在建设4G通信网络系统时,通信运营商们将考虑直接在3G通信网络的基础设施之上,采用逐步引入的方法,使移动通信从3G逐步向4G过渡。

参考文献:

1、谢显忠等。基于TDD的第四代移动通信技术[M].电子工业出版社,2005.

2、宋文涛,罗汉文。移动通信[M].上海交通大学出版社,1996.

移动通信论文 篇3

ITU-T和ATMForum对接入控制定义的描述中,接入控制指的是网络在呼叫建立或者重新协商的过程中所采取的一系列行为。针对边缘路由器或提供不同应用的服务器来说,接入控制是服务开始的前提。相对于客户来说,接入控制表示一种服务端对能够提供满意服务能力的判断。在服务端通过该策略分析计算得出可接入的时候,说明当前有能力满足客户提交的业务分组中QoS参数的保证。若是不能满足,那么说明当前服务端自身资源不足,不能给予应有的服务。QoS参数指的是需要QoS保证的业务流特性,是接入策略用来判别提供服务的数据来源。在达成QoS应用以前,要把预先商定的QoS参数提交到服务提供端,进而进行协商。它的作用包括:一是限定了通信性能,使得路由器以此来实施业务的整形和管制;二是当该业务参数提交后,网络服务端需要判断当前是否能够支持该业务,这一点需要通过接入控制算法来进行。CAC包括两个过程:一是数值计算过程,二是判断接纳过程。前者是根据QoS参数和当前系统接入的情况,采用一定的理论进行计算,得到相应的数据;后者根据这些数据来进行接纳处理。数值计算过程中所需数据来源方式有两种,体现在接入算法的不同,一种是基于模型或参数的CAC策略,第二种是基于测量的CAC策略,其原理基本相似。根据所要求的服务性能(主要是丢失率)来计算满足这一条件所需的带宽,所不同的是基于模型的计算需要考虑一种严格意义上的排队模型,不需要考虑实时性要求,但服务质量的可靠性高。而基于测量的策略不考虑排队模型,只会分析流量特性,这种策略具有实时性保证,但服务质量的保证不如前者那么严格。

二、公平性的接入判别机制

公平性的接入判别是整个CAC机制的核心部分,在有新业务到达时,根据公平性来判断是否接入,而不是采用老的基于测量的算法,仅考虑带宽不足的情况。利用公平性的判断机制整个CAC要达到的效果是:第一,QoS最基础的服务质量,当接纳一个新的连接请求后,不但系统中原有的应用能够保证其服务质量,而且这个新的连接在系统中也能得到相应的服务质量。第二,在第一个前提下,保证链路的利用率最大化,也就是说在有限的带宽的情况下能够容纳一定的连接数量,并且这些不同类别连接的综合业务速率尽量接近链路带宽。第三,保证公平性,使系统的利用效率与满意度的综合指标最大化。1.等待状态的建立。在QoS的控制策略中加入公平性限制的方法是添加另外一种状态,即在原有的接纳(AcceptState)和拒绝(RefuseState)这两种连接状态中,再加入第三种状态:等待状态(HoldingState)。如果一个新生成的业务应用请求连接服务端时得到的反馈状态是等待状态,则意味着该业务被服务器弱连接或者说是预连接,即没有产生所请求业务速率的正常通信数据,但已经与服务端建立了一个连接通路服务端,保证这个连接没有产生其业务流量(一些必要的保持通信连接的数据包还是会产生,但很小),同时连接参数(包括业务类别到达业务速率等)也保存在服务器中(与之不同的是,当一个业务返回一个拒绝状态时,其通信参数是得不到保存的)。2.等待状态下对新业务的接入判断。当一个请求的服务因为当前系统带宽不够而处于等待状态时,经过一定的时间后,当前系统中会有一些连接中止把带宽释放出来。这个时间设为T,T时间后,系统剩余带宽如果大于或者等于处于等待状态中的请求的平均业务速率,该业务可以被接纳。同时考虑等待业务的超时时间Texpired,显然满足Texpired>T的条件这个等待的业务才有机会被接纳。设处于等待状态时,系统的剩余带宽为Brest,而处于等待状态中的业务到达速率为Rhold,经过最多Texpired后系统剩余带宽Brest要大于Rhold,此时等待状态中的业务就可以开始正常通信,为了实现新的连接过程需要利用Texpired和T。3.正常状态下对新业务的接入判断。这个正常状态是相对等待状态而言的,它指的是系统中没有处于等待状态业务的情况下,对新到达业务请求的处理。返回状态全部是拒绝显然不符合这里的公平性机制,但是只要不足就返回等待状态,也不一定能够达到控制目标。一旦某类业务处于等待状态,其它业务速率小于它的业务则不能被接入,这样经过一个较长的接入过程后,系统中整体会走向偏大业务的聚合,这是系统公平性的一个极端,实际上也可能是不公平的,除非是为特定通信设计的系统才能使用此策略。本文提出的策略是用当前业务的分布情况作出估计,根据公平度概念判断出是否应该返回等待状态,以便系统在长时间后处于稳定时各业务均能得到公平的接入,也使得整个QoS模型朝公平性、利用率二者的最优化方向逼近。基于这样的考虑,在正常状态下,一个新提交的业务因带宽不足而需要判断返回状态时,其处理过程首先要查看系统中已有的链路通信情况,根据获取的超时设定来估计在超时时刻到达前,系统中可否有存在的连接停止服务释放出的带宽满足该到达业务的要求,这在上一小节已经实现,如果能满足该条件再按照分类的不同、通信速率的不同估算整体的公平度,并根据新到达的业务计算被服务器接纳之后新的公平度,如果使得接入更公平则把这个业务置于等待状态,反之拒绝该业务的请求。

三、结语

移动通信论文 篇4

今年年底,我国境内的模拟移动电话网就要关闭了。也不过十年前,扛着“大哥大”招摇过市者的形象还历历在目,而今在街头巷尾,乃至在公共交通工具上,不难看到许多衣着入时的青年或行色匆匆的打工者,捂着手机轻声细语。一、二千元就可买到一个“掌中宝”,便携的手机使电话的概念发生革命性变化,首先和首要的是用户不再呼叫一个“地方”而呼叫一个“人”,它使用户把自己从拴在一个地理位置上的电话绳索中解放出来,可以在任何时间接通到任何地方的任何人。当我们欣赏移动电话还没有够时,又出现了移动数据通信业务、移动多媒体业务,媒体常用“迅猛的”“惊人的”等字眼来形容移动通信的发展√★√。

考证过去

移动通信的历史可以追溯到20世纪二十年代,如1921年开通的美国底特律警察移动通信系统和1926年开通的德国列车移动电话系统等,到了五十年代,使用频分多址FDMA的模拟移动电话就已经商用了。这种工作在150MHz或450MHz的大区制无线电话系统是为少数人服务的,但是,它是现代移动通信的基础。美国贝尔实验室在20世纪七十年明蜂窝小区和频率复用的概念后,以贝尔系统为主开展的“高级移动电话(AMPS)经过了将近十年的研制,于1979年成功地在芝加哥市和涅瓦市进行试验测试。日本和欧洲各国也开始研制和AMPS差不多的第一代移动通信系统(firstgeneration1G)是模拟系统,工作于450MHz或8/900MHz频率。当1980年首先引入蜂窝通信概念时,它们主要用于汽车,受限于体积重量与功耗。但当移动电话经不断改进后变得小了,轻了,价格也低了的时候,它们受到人们的注意,开始离开汽车,进入人们的公文箱、手提包,也有被“扛”着的。那时的移动通信技术落后,规模小,费用高,完全不是广大群众所能使用的,很多人认为移动通信在通信网中不可能有主要地位。但也就是这时期,各发达国家开始了下一代移动通信数字技术的竞争。八十年代后期国际电联(ITU)希望能制订第二代移动通信系统(Secondgeneration2G)的统一标准,便于实行全球漫游。各发达国家分别在欧、美、日各自地盘研发出三种时分多址(TDMA)标准的系统,市场份额最大的是欧洲GSM(GlobalSystemforMobilCommunication)标准。就在2G进入市场的时候,美国高通公司(Qualcomon)异军突起,发明和开发了码分多址(CDMA)技术,1993年在美国完成了IS-95的美国标准,进入了2G市场的竞争。2G在1995年以后在全球进入高速发展的时期,其用户总数已超过1G用户的数十倍,带来了上千亿美元的产品市场,到今天,通信产品市场中移动通信产品已占大部分,而且此比例还在不停地增加。未来第三代移动通信(thirdgeneration3G)的市场容量又将数倍于2G。

在这样的背景下,3G从标准制订起就必然要开始一场激烈的国际竞争。为了实现通信的个人化、全球漫游、无缝覆盖的理想,ITU从一开始就希望全球有一个统一的标准,但欧美之间分歧很大,欧洲和日本要用WCDMA(宽带CDMA)制式以便与目前GSM有继承性而美国主流要用CDMA-2000(有时写作cdma2000)以兼容目前的窄带CDMA制式。ITU在2000年5月全球无线电大会上批准无线接入网可以用5种技术标准。我国自主提出的TD-SCDMA的包括其中,也即TD-SCDMA成为全球3G建设选择方案之一。3G的核心形式最终将取决于固定网的升级,可能是全IP网,或是ATM网。在3G发展初期不可能抛弃已有相当规模的2G核心网而重新建立一个新网络,必然通过演进东平滑过渡的方式进行发展。所以在3G发展初期可以使用的核心网主要是基于GSMMAP的核心网和基于IS-41的核心网。

国人渐已醒

我国移动通信无论是模拟制式或是数字制式的引入与世界大多数国家相比在时间上不是太晚,在规模上也不小,种类也不很多。

从1987年中国电信在广州建立第一个模拟移动电话网到现在,我国已经有了5种移动通信网,即A、B、C、D和G网。这5种网各有不同的通信范围和业务功能。A网和B网采用频分复用多址方式FDMA、TACS体制;C网采用CDMA码分复用多址方式D、G网采用TDMA时分复用多址方式、GSM体制。A网和B是模拟网属于1G,C、D、G网是数字网属于2G。其实我国曾经还有两个网,一个是模拟网,另一个是数字网,前者采用AMPS体制,后者采用CDMA体制(即C网),它们是属于部队使用,所以可以称之为军网。不过现在这两个网都交给地方(联通)管理了。

在我国发展模拟制式红火之时的80年代末、90年代初,相继推出GSM、D-AMPS、PDC等采用TDMA技术和以IS-95为代表的CDMA技术的新的数字制式的移动通信系统。这种数字移动通信技术采取先进的信源编码(如话音压缩)和信道编码(如前向纠错)及先进的多址技术使得在数字化的基础上,多种信息得以融合(如话音、短消息等),各种增值业务得以展开(如手机银行、手机上网)等;通过先进的数字信号处理技术,使得信息在传输过程中的抗干扰、抗衰落能力大为增强,传输质量和安全保密性同时得以提高;而先进的多址处理技术使得整个系统的容量大为提高,用同样的频谱带宽,数字移动通信系统可以容纳数倍于模拟移动通信系统的用户数。正因为如此,世界各国政府和企业无不倾力推动这一移动通信的数字化革命,广大用户也积极响应,从而数字化浪潮在90年代席卷全球,仅仅几年的时间我国(不含港、澳、台)模拟移动通信从1987年推出数字制移动通信的1994年,共有用户600多万户。而1994年到2000年,数字用户急速扩到8000多万户。移动通信用户数还在上升,经营移动通信的公司只有努力扩容,容量饱和了,就新开频段来满足客户的需要。

我国在90年代初开始引入GSM系统,从现在的运行状态来看与大洋彼岸的高通公司的CDMA系统相比有一些诸如频率资源紧张、频谱利用率不足和数据等新业务的引入等方面的差距,同时从编织2.5G与3G的角度出发联通公司将建立一个全新的IS-95CDMA新网。

今年5月15日,备受产业界关注的中国联通CDMA一期工程系统设备招标工作结束,5月22日中国电子报用“十厂商分食联通CDMA巨标”为题消息。中国产业经营报7月12日用“CDMA,电信市场的黑马”为题的报道说,5月15日正式与中外厂商的签约,使联通CDMA正式上路。这个整体规模达到5000亿元的大市场似乎终于从海市蜃楼走入现实,成为最有“注意力”的商机。合同的最终签署让包括联通、投标企业,提供芯片、技术专利的高通,以及华尔街在内的投资人等多方人士都长长松了一口气。联通的CDMA项目牵涉到太多的利益,包括经济上的,更包括政治上的。

中国联通人士介绍,CDMA的一期工程的网络容量将达到1515万用户,预计在2001年底或2002年初完工,投资121亿元。而据确切消息说,在未来5年中,由联通引发的市场,包括网络建设、终端手机和服务市场加起来将大约有5000亿元人民币。

6月初在香港举办的2001年3G大会暨第六届CDMA年会上,联通与世界13大运营商签署了CDMA网间漫游谅解备忘录。这无疑是给本已热得发烫的CDMA火上浇油,包括美国、韩国等多个国家的13大运营商基本涵盖了全球所有的CDMA运营商。全球CDMA阵营从此获得与GSM阵营抗衡的可能。

冲刺3G

3G异于2G,主要是数据传输能力大为增强,ITU规定如下:

*高速移动(对FDD:500Km/h;对TDD:120Km/h):144Kb/s

*室外静止或步行时手持机环境(速度30Km/h):384Kb/s

*室内环境(速度3Km/h):2Mb/s

3G与2G比较主要是传输带宽变宽了,其典型带宽为5MHz(2G的带宽仅为其三分之一,即1.6MHz)这样就从无线接入网、用户终端和核心网都要不同于2G。如何建设3G的道路不外有两条:一条是创新式的,把无线接入网、终端和核心网重新进行研发,100%是新的;演进式的,即要用现有的网络系统向3G演进。两种办法比较而言,运营商多愿意后者办法,因为避免了对已有的投资造成损失。

现在仍在高速发展的GSM和IS-95CDMA都有过渡到2.5G甚至3G的演进方案,甚至有产品,GSM向GPRS(通用分组无线业务)和EDGE(增强数据速率改进)技术发展,IS-95向IS-95B(利用的码聚集技术)和IX(多载波)发展。

1980年前后,即贝尔蜂窝概念刚提出来时,我们看不到它的未来,1G的机会在我们眼前白白流失;当2G席卷全球时,我们也只抓住了一个尾巴,在移动通信的市场上,我国生产的基站、网络设备和手机的份额只占2%-5%;现在3G标准开始制定,机会再次来临,我国无线通信标准研究院(CWTS)是第三代伙伴关系计划3GPP、3GPP2这两个标准化组织成员,我国专家,教授刻苦研究提出了适合中国实情的3G方案,试制了3G系统里的配套产品,甚至提出第四代通信系统(fourthgeneration4G)方案。

*我国提出时分双工-同步码分多址TD-SCDMA无线接入系统使用了智能天线(SmartAntena)、同步CDMA(SynchronousCDMA)和软件无线电(SoftwareRadio)通信技术,三种技术的英文名字都是“S”开头因而称为SCDMA,以有别于其他CDMA系统。

SCDMA无线接入系统是目前国际上唯一使用了“智能天线”和TDD双工方式的同步CDMA系统。其占用频带少,发射功率之低是任何系统都难以达到的。总的来说,使用SCDMA无线接入技术将带来如下优势:相对最高的无线频谱利用率;在低反射功率下,有较远的通信距离;设备构成简单,依靠软件无线电,硬件成本较低,因而产品有较高的性能价格比;其灵活性高,便于系统性能的改进,完善和提高(特别是增加新业务)都不需要改变硬件而可以用软件加载来实现。

SCDMA使用时分双工(TDD):上下行链路工作于同一频率,不需要成对的频率,适用于传输上/下行非对称业务的数据,尤其是基于IP的因特网业务,但是终端的移动速度只达到120Km/h,仅适用于较高速的接入环境。此外TDD系统要考虑上/下行时隙保护时间,小区半径限制在10Km左右。

TD-SCDMA最大的优点是它可在现有的GSM平台上平滑过渡到3G。

TD-SCDMA技术规范是我国提出的,是被ITD全套采纳的无线通信标准。

*1998年初,华为公司开始从事WCDMA基站系统的研发工作目前正在进行WCDMA产品的开发研制工作,具体部分分为无线接入网络RAN,RAN包括基站NodeB和无线网络控制器RNC。

*2000年,中国连宇公司向3GPP2提出LAS-CDMA(大区域间同步码分多址)方案,该方案在扩频码的构造上实现了突破,通过“无干扰”时间窗内的同步作用使干扰大大减少,具有频谱效率高、传输数据率高和适合高速移动环境等优点,可在1.25MHz带宽上提供5.53Mb/s的数据传输率,能适应分组交换及移动网向全IP发展的要求,为实现未来(4G)大容量、高数据速率的移动通信系统提供了一个较为可行的方案。我们(绝非业内人士),在杂志上看到上面三段消息后,希望业内的大公司、大工厂不要一味紧跟那些跨国大公司后面“摇旗呐喊”;而应更多的响应(移动通信)业内一些专家教授和社会的呼吁,多支持国内的研究、研发和试制部门的工作,争取在5-10年内从根本上改变我国移动通信发展依赖外国的局面,建立起我国移动通信真正的民族工业,我们不愿看到3G重蹈3G繁荣的移动通信市场、成功的运营业和不发达的移动通信制造业之复辙。

曾经的心痛

有两个一新一旧的失败范例

中国经营报7月17日题为“美国电信老大,宽带受挫”一文中提到,经过1984年一分为七之后保留原公司名称AT&T(美国电话电报公司)只能经营长途电话业务,面对国内还有几家公司的竞争,AT&T处境很难。AT&T公司首席执行官高价与别人争购第一媒体公司和电视通讯公司,接着利用它们的电视线路改造成双向、交互式的电缆,从而抛开地方电话公司的关卡,实现一线三用(即宽带上网、打电话及看交互电视)的强大宽带功能。但是这项工程耗资巨大,且吸引人们利用宽带上网的人数增长并没有预想的多,尤其它持的很大股份的宽带上网服务公司亏损更是进一步扩大,到目前为止,AT&T仅吸引了70万宽带用户,同时背负650亿美元的债务,使AT&T深陷宽带危机而不能自拔。7月9日美国通讯广播公司(COMCAST)向AT&T的宽带业务部发出愿意以450亿美元的予以收购的信息。

移动通信论文 篇5

集群通信系统是共享资源、分担费用、向用户提供优良服务的多用途、高效能而又廉价的先进无线调度指挥系统。对于指挥调度功能要求较高的企、事业、工矿、油田、农场、公安、武警以及军队等部门都十分适用,集群通信采用单工或半双工方式,要求接续时间小于500毫秒,具有调度级别控制等。同时对于集群通信还提出了传输集群、准传输集群和信息集群的定义。

随着集群通信的发展和用户的需求,集群通信也从原来的模拟集群向数字集群过渡。但这种过度并不是简单的将原来的模拟话音转换为数字话音和提供数据传输功能就可以称为数字集群了。其实,综观国际上提出的数字集群来看,数字集群的标准都是围绕着用户的需求而发展起来和提出的。

2.数字集群移动通信网络的运行

数字集群通信是继手机、小灵通之后的第三大战场,正在成为电信领域开发的新重点,运营商、设备商正在展开一场新的角逐。在设计中针对了专业无线用户的需求,特别适合在政府和商业领域的专网使用。

2.1数字集群通信的标准

TETRA(陆地集群无线电)系统在指挥调度方面应用的比较多,可完成话音、电路数据、短数据消息、分组数据业务的通信及以上业务的直通模式,并可支持多种附加业务。在大区制条件下最大覆盖半径56公里。TETRA扩容可以逐步增加模块化,适用于小、中、大型调度系统;设计组网灵活,既适应于专用调度网,也适应于共用调度网。TETRA话音编码方式采用代数结构码本激励线性预测编码,具有良好的话音质量,即使在强背景噪声干扰下也可听清,话音质量并不像调频系统那样随场强减弱而降低。大量实验证明,TETRA系统的话音质量比GSM系统好。因此,大量应用于应急、调度、指挥等专网应用系统。

iDEN(集成数字增强型网络)系统是基于TDMA多址方式的调度通信/蜂窝双工电话组合系统。它在传统大区制调度通信基础上,大量吸收数字蜂窝通信系统的优点,如采用双模手机方式,增强了电话互联功能;采用小区复用蜂窝结构,提高了网络覆盖能力。选用这种编码是先进的,但技术公开性不好,价格较贵。但通话质量和保密性都较好。

2.2数字集群系统设备安全

设备是网络的基础,设备的安全是保障网络安全的基础,只有保证网络的物理可靠性,才能保证网络功能、信息的安全性,因此基础设备的可靠性至关重要。

对于交换机,硬件上应实现关键部件的热备份。软件上,关键的用户数据、配置数据应当及时、定期进行备份。对于基站系统要考虑其抗外界干扰的能力,如射频干扰、雷击、抗震性能等。基站系统的备用电源应根据基站覆盖区的重要程度适当配备,以应变突发事件。系统主备用倒换能力是系统可靠性的一个重要指标,如倒换时间、倒换过程对正在进行的业务的影响等。完善的监控告警机制可大大提高网络的可靠性,如系统部件可自我诊断和修复、系统可隔离故障模块、及时产生告警信息。此外,调度台、终端存储了用户的重要信息,这些设备由用户控制,应由专人维护,以保证相关用户信息不被外界窃取。

数字集群通信系统是一种特殊的专用通信系统,在应对突发事件时,对社会稳定和人民生命财产的安全起着及其重要的作用,因此数字集群通信系统的安全要求要大大高于公众移动通信系统,所以数字集群通信系统运营者必须从各方面考虑如何增强系统的抗灾变能力,如何使系统更安全可靠的传递信息。只有全面的重视数字集群通信系统的安全问题,才能使数字集群系统发挥其应有的作用。

3.未来数字集群通信技术发展方向

3.1高安全性

数字集群在基站与手机之间,信息完全依靠无线电波的传输,很容易被人们从空中拦截,在通话状态、待机状态都会泄密,即使关闭电台,利用现代高科技,仍可遥控打开,继续窃听,从中截取、破坏、调换、假冒和盗用通信信息。

3.2高抗毁性

专业移动通信在使用过程可能遇到恶意破坏的人为因素或雨雪灾害的自然因素等影响,导致网络不能正常工作,因此,未来PPDT系统要求可靠、准确地提供业务,具有高的抗毁性和可用性。通常情况下,系统以集群方式工作;在遭遇危害的极端情况下,系统以故障弱化方式或直通方式工作,保证系统能满足基本的集群业务需求。

3.3高环境适应性

专业移动通信由于它是用于全球的表层和空间,会遇到各种恶劣的气候、地形和环境;因此,要求通信装备必须能抗拒酷暑、严寒、狂风、暴雨等恶劣气候条件;必须适应山岳、丛林、沙漠、河海、高空等三维空间的不同地形环境条件;既可车载船装,又能背负手持,要经得起各种移动体的安装机械条件;在嘈杂的噪声环境,要具有背景噪声滤除功能,使通话对方听不见噪声干扰,话音清晰;在高速行驶时,通信不能中断,质量不能下降,可支持500km/h的高速运行。

4.结论

集群共网毕竟具有它自身的缺陷,那就是这些共网往往是调度功能要相对弱一些,即使是利用与专网相同的系统来组建的共网,也同样会相对使得调度功能减弱。那些在公网基础上发展起来的调度系统由于是在原来的系统协议和结构上增加了调度功能,由于原来的体制、协议和系统结构是以公网的电话业务为主而建立的,要想完全能够符合专业用户对专网的需求,应该讲目前还是达不到的。

参考文献:

[1]郑祖辉。数字集群通信漫谈[J].电子世界,2003,(12).

[2]潘娟。数字集群通信系统的安全保障[J].当代通信,2006,(13).

[3]胡兴军,向群。数字集群通信三大标准及前景[J].中国信息导报,2004,(9).

一键复制全文保存为WORD
相关文章