总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它可以提升我们发现问题的能力,快快来写一份总结吧。下面是小编给大家带来的高二数学高效知识点归纳总结,以供大家参考!
高二数学高效知识点归纳总结
反正弦函数的导数:正弦函数y=sin_在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsin_,表示一个正弦值为_的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。
反函数求导方法
若F(_),G(_)互为反函数,
则:F'(_)_G'(_)=1
E.G.:y=arcsin__=siny
y'__'=1(arcsin_)'_(siny)'=1
y'=1/(siny)'=1/(cosy)=1/根号(1-sin^2y)=1/根号(1-_^2)
其余依此类推
高二数学知识点最新总结
用样本的数字特征估计总体的数字特征
1、本均值:
2、样本标准差:
3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变
(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍
(3)一组数据中的值和最小值对标准差的影响,区间的应用;
“去掉一个分,去掉一个最低分”中的科学道理
高二年级数学必修二知识点大全
空间两条直线只有三种位置关系:平行、相交、异面
按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法
若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)
规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角
由此得直线和平面所成角的取值范围为[0°,90°]
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直
直线和平面垂直
直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行——没有公共点
直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
高二数学高效知识点归纳总结相关文章: