初中数学的知识点有很多,那么初中数学都学习哪些知识呢?为了方便大家学习借鉴,下面小编精心准备了人教版七年级下册数学期末试题与答案内容,欢迎使用学习!
第一部分选择题(共30 分)
一、选择题:(本大题满分30分,每小题3分)
1、下列语句错误的是( )
A、数字0也是单项式 B、单项式— 的系数与次数都是1
C、 是二次单项式 D、 与 是同类项
2、如果线段AB=5cm,BC=4cm,那么A,C两点的距离是( )
A、1cm B、9cm C、1cm或9cm D、以上答案都不对
3、如图1所示,AE//BD,∠1=120°,∠2=40°,则∠C的度数是( )
A、10° B、20° C、30° D、40°
4、有两根长度分别为4cm和9cm的木棒,若想钉一个三角形木架,现有五根长度分别为3cm、6cm、11cm、12.9cm、13cm的木棒供选择,则选择的方法有( )
A、1种 B、2种 C、3种 D、4种
5、下列说法中正确的是( )
A、有且只有一条直线垂直于已 知直线
B、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
C、互相垂直的两条线段一定相交
D、直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线l的距离是3cm.
6、在下列轴对称图形中,对称轴的条数最少的图形是( )
A、圆 B、等边三角形 C、正方形 D、正六边形
7、在平面直角坐标系中,一只电子青蛙每次只能向上或向下或向左或向右跳动一个单位,现已知这只电子青蛙位于点(2,—3)处,则经过两次跳动后,它不可能跳到的位置是( )
A、(3,—2) B、(4,—3) C、(4,—2) D、(1,—2)
8、已知方程 与 同解,则 等于( )
A、3 B、—3 C、1 D、—1
9、如果不等式组 的解集是 ,那么 的值是( )
A、3 B、1 C、—1 D、—3
10、在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变 换:
① ②
按照以上变换有: ,那么 等于( )
A、(3,2) B、(3,- 2) C、(-3,2) D、(-3,-2)
第二部分非选择题(共90分)
二、填空题(本大题满分24分,每小题3分)
11、如图,BC⊥AC,CB=8cm,AC=6cm,AB=10cm,那么点B到AC的距离是 ,点A到BC的距离是 ,A、B两点间的距离是 。
12、如图,在 △ABC中,∠C=90?,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,
则BC= cm
13、如图,CD是线段AB的垂直平分线,AC=2,BD=3,则四边形ACBD的
周长是
14、如图,OA=OB,OC=OD,∠O=60°, ∠C=25°,则∠BED等于_____________
15、已知点 在第二象限,则点 在第 象限。
16、某班为了奖励在校运会上取得较 好成绩的运动员,花了400 元钱购买甲,乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?该问题中,若设购买甲种奖品 件,乙种奖品 件,则可根据题意可列方程组为
17、若一个多边形的内角和为外角和的3倍,则这个多边形为 边形。
18、若关于 的二元一次方程组 的解满足 ,则 的取值范围为
三、解答题(本大题满分66分)
19、解下列方程组及不等式组(每题5分,共10分)
(1) (2)
20、(本小题8分)某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题:
(1)共抽取了多少名学生的数学成绩进行分析?
(2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?
(3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?
21、(本小题8分)如图所示,一艘货轮在A处看见巡逻艇M在其北偏东62?的方向上,此时一艘客轮在B处看见这艘巡逻艇M在其北偏东13?的方向上,此时从巡逻艇上看这两艘轮船的视角∠AMB有多大?
22、(本小题10分)已知:如图,AB=DC,AE=DF,CE=FB,求证:AF=DE。
23、(本小题10分)已知,如图,∠B=∠C=90 ?,M是BC的中点,DM平分∠AD C。
(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论。
(2)线段DM与AM有怎样的位置关系?请说明理由。
24、(本小题12分)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格,月处理污水量如下表:
A型 B型
价格(万元/台)
处理污水量(吨/月) 240 200
经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台设备少6万元。
(1)求 、 的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
(3)在(2)问到条件下,若该月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案。
25、(本小题8分)在平面直角坐标系中,已知三点 ,其中 满足关系式 ;
(1)求 的值,(2)如果在第二象限内有一点 ,请用含 的式子表示四边形ABOP的面积;若四边形ABOP的面积与 的面积相等,请求出点P的坐标;
附加题:(共10分)(3)若B,A两点分别在 轴, 轴的正半轴上运动,设 的邻补角的平分线和 的邻补角的平分线相交于第一象限内一点 ,那么,点 在运动的过程中, 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由。
(4)是否存在一点 ,使 距离最短?如果有,请求出该点坐标,如果没有,请说明理由。
一、 选择题
BCBCD BCADA
二、 填空题
11、8cm,6cm,10cm 12、8 13、10 14、80? 15、一
16、 17、八 18、
三、解答题
21、(本小题8分)
依题意得:∵点M在点A的北偏东62 ?,∴∠MAB=28?
∵∠MBF=13?, ∠ABF=90? ∴∠ABM=103 ?
∴∠AMB=180 ?—∠MAB—∠ABM=180 ?—28?—103 ?=49 ?
23、(本小题10分)(1)AM是平分∠BAD,
理由如下:过点M作ME⊥AD于点E。
∵DM平分∠ADC且MC⊥ CD, ME⊥AD ∴MC=ME
∵M为BC的 中点 ∴MC=MB
∴ME=MB ∵MB⊥AB, ME⊥AD
∴AM平分∠BAD
(2)DM⊥AM
理由如下:∵DM平分∠ADC ∴∠ADM= ∠ADC
∵AM平分∠BAD ∴∠DAM= ∠BAD
∵∠B=∠C=90 ? ∴AB//CD
∴∠ADC+∠BAD=180 ?
∴∠ADM+∠DAM= ∠ADC+ ∠BAD= (∠ADC+∠BAD)=90 ?
∴∠DMA=90 ?
∴DM⊥AM
25、(本小题8分)(1)a=2,b=3,c=4(2)四边形ABOP的面积 ;
的面积=6, 点P的坐标(-3,1);
附加题:(共10分)(3) 的大小不会发生变化其定值
第五章 相交线与平行线
5.1 相交线
5.2 平行线及其判定
5.3 平行线的性质
5.4 平移
第六章 实数
6.1 平方根
6.2 立方根
6.3 实数
第七章 平面直角坐标系
7.1 平面直角坐标系
7.2 坐标方法的简单应用
第八章 二元一次方程组
8.1 二元一次方程组
8.2 消元——解二元一次方程组
8.3 实际问题与二元一次方程组
8.4 三元一次方程组的解法
第九章 不等式与不等式组
9.1 不等式
9.2 一元一次不等式
9.3 一元一次不等式组
第十章 数据的收集、整理与描述
10.1 统计调查
10.2 直方图
10.3 课题学习 从数据谈节水
一、整式
1、单项式
①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。
③一个单项式中,所有字母的指数和叫做这个单项式的次数。
2、多项式
①几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。
②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。
3、整式单项式和多项式统称为整式。
二、整式的加减
1、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。
2、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
三、同底数幂的乘法
同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);
⑤公式还可以逆用:(m、n均为正整数)
四、幂的乘方与积的乘方
1、幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。
2、底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
如将(-a)3化成-a3
3、底数有时形式不同,但可以化成相同。
4、要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
5、积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数)。
6、幂的乘方与积乘方法则均可逆向运用。
五、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n)。
2、在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0。
②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义。
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的。
预习
对于初中数学学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。
听讲
这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。
复习
体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。
解题
课堂练习是最及时最直接的反馈,一定不能错过的,不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆,很重要噢。