向心加速度
向心加速度(匀速圆周运动中的加速度)的计算公式:
a=rω^2=v^2/r
说明:a就是向心加速度,推导过程并不简单,但可以说仍在高
科里奥利加速度
科里奥利加速度
中生理解范围内,这里略去了。r是圆周运动的半径,v是速度(特指线速度)。ω(就是欧姆的小写)是角速度。
这里有:v=ωr.
1.匀速圆周运动并不是真正的匀速运动,因为它的速度方向在不断的变化,所以说匀速圆周运动只是匀速率运动的一种。至于说为什么叫他匀速圆周运动呢?可能是大家说惯了不愿意换了吧。
2.匀速圆周运动的向心加速度总是指向圆心,即不改变速度的大小只是不断地改变着速度的方向。
重力加速度
地球表面附近的物体因受重力产生的加速度叫做重力加速度,也叫自由落体加速度,用g表示。
重力加速度g的方向总是竖直向下的。在同一地区的同一高度,任何物体的重力加速度都是相同的。重力加速度的数值随海拔高度增大而减小。当物体距地面高度远远小于地球半径时,g变化不大。而离地面高度较大时,重力加速度g数值显着减小,此时不能认为g为常数
距离面同一高度的重力加速度,也会随着纬度的升高而变大。由于重力是万有引力的一个分力,万有引力的另一个分力提供了物体绕地轴作圆周运动所需要的向心力。物体所处的地理位置纬度越高,圆周运动轨道半径越小,需要的向心力也越小,重力将随之增大,重力加速度也变大。地理南北两极处的圆周运动轨道半径为0,需要的向心力也为0,重力等于万有引力,此时的重力加速度也达到。
由于g随纬度变化不大,因此国际上将在纬度45°的海平面精确测得物体的重力加速度g=9.80665m/s^2;作为重力加速度的标准值。在解决地球表面附近的问题中,通常将g作为常数,在一般计算中可以取g=9.80m/s^2。理论分析及精确实验都表明,随纬度增大,重力加速度g的数值逐渐增大。如:
赤道g=9.780m/s^2
广州g=9.788m/s^2
武汉g=9.794m/s^2
上海g=9.794m/s^2
东京g=9.798m/s^2
北京g=9.801m/s^2
纽约g=9.803m/s^2
莫斯科g=9.816m/s^2
北极地区g=9.832m/s^2
注:月球面的重力加速度约为1.62m/s^2,约为地球重力的六分之一。
匀加速直线动动的公式
1.匀加速直线运动的位移公式:
s=V0t+(at^2)/2=(vt^2-v0^2)/2a=(v0+vt)t/2
2.匀加速直线运动的速度公式:
vt=v0+at
3.匀加速直线运动的平均速度(也是中间时刻的瞬时速度):
v=(v0+vt)/2
其中v0为初速度,vt为t时刻的速度,又称末速度。
4.匀加速度直线运动的几个重要推论:
(1)V末^2-V初^2=2as(以初速度方向为正方向,匀加速直线运动,a取正值;匀减速直线运动,a取负值。)
(2)AB段中间时刻的即时速度:
Vt/2=(v初+v末)/2
(3)AB段位移中点的即时速度:
Vs/2=[(v末^2+v初^2)/2]^(1/2)
(4)初速为零的匀加速直线运动,在1s,2s,3s……ns内的位移之比为1^2:2^2:3^2……:n^2;
(5)在第1s内,第2s内,第3s内……第ns内的位移之比为1:3:5……:(2n-1);
(6)在第1米内,第2米内,第3米内……第n米内的时间之比为1:2^(1/2):3^(1/2):……:n^(1/n)
(7)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:△s=aT^2(a一匀变速直线运动的加速度T一每个时间间隔的时间)。
(8)竖直上抛运动:上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动.
曲线运动
1、在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。
2、物体做直线或曲线运动的'条件:
(已知当物体受到合外力F作用下,在F方向上便产生加速度a)
(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;
(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。
3、物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。
4、平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。
分运动
(1)在水平方向上由于不受力,将做匀速直线运动;
(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。
5、以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下。
6、①水平分速度:②竖直分速度:③t秒末的合速度
④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示
7、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
8、描述匀速圆周运动快慢的物理量
(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上
9、匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变
(2)角速度:ω=φ/t(φ指转过的角度,转一圈φ为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的
(3)周期T,频率:f=1/T
(4)线速度、角速度及周期之间的关系:
10、向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。
11、向心加速度:描述线速度变化快慢,方向与向心力的方向相同,
12、注意:
(1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。
(3)做匀速圆周运动的物体受到的合外力就是向心力。
13、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动
1、力:
力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。
按照力命名的依据不同,可以把力分为
①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)
②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。
力的作用效果:
①形变;②改变运动状态.
2、重力:
由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定,
注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力.由于重力远大于向心力,一般情况下近似认为重力等于万有引力.
3、弹力:
(1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。
(2)条件:①接触;②形变。但物体的形变不能超过弹性限度。
(3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)
(4)大小:
①弹簧的弹力大小由F=kx计算,
②一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定.
4、摩擦力:
(1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可.
(2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反.但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度.
(3)摩擦力的大小:
说明:a、FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
b、为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面
积大小、接触面相对运动快慢以及正压力FN无关。
②静摩擦:由物体的平衡条件或牛顿第二定律求解,与正压力无关.
大小范围0
(fm为静摩擦力,与正压力有关)
静摩擦力的具体数值可用以下方法来计算:一是根据平衡条件,二是根据牛顿第二定律求出合力,然后通过受力分析确定.
(4)注意事项:
a、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。
b、摩擦力可以作正功,也可以作负功,还可以不作功。
c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。
d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
1、参考系:运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。通常以地面为参考系。
2、质点:
(1)定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。
(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。
(3)物体可被看做质点的几种情况:
①平动的物体通常可视为质点。
②有转动但相对平动而言可以忽略时,也可以把物体视为质点。
③同一物体,有时可看成质点,有时不能。当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以。
【注】质点并不是质量很小的点,要区别于几何学中的“点”。
3、时间和时刻:
时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。
4、位移和路程:
位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;
路程是质点运动轨迹的长度,是标量。
5、速度:
用来描述质点运动快慢和方向的物理量,是矢量。
(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为,方向与位移的方向相同。平均速度对变速运动只能作粗略的描述。
(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。
6、加速度:用量描述速度变化快慢的的物理量,其定义式为。
加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。
补充:速度与加速度的关系
1、速度与加速度没有必然的关系,即:
(1)速度大,加速度不一定也大;
(2)加速度大,速度不一定也大;
(3)速度为零,加速度不一定也为零;
(4)加速度为零,速度不一定也为零。
2、当加速度a与速度V方向的关系确定时,则有:
(1)若a与V方向相同时,不管a如何变化,V都增大。
(2)若a与V方向相反时,不管a如何变化,V都减小。
物体通过的路程与所用的时间之比叫做速度。
平均速度(与位移、时间间隔相对应)
物体运动的平均速度v是物体的位移s与发生这段位移所用时间t的比值。其方向与物体的位移方向相同。单位是m/s。
v=s/t
瞬时速度(与位置时刻相对应)
瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。
速率≥速度
速度变化的快慢加速度
1.物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值a=(vt—v0)/t
2.a不由△v、t决定,而是由F、m决定。
3.变化量=末态量值—初态量值……表示变化的大小或多少
4.变化率=变化量/时间……表示变化快慢
5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。
6.速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。
万有引力定律及其应用
1.万有引力定律:引力常量G=6.67×Nm2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=Gg=G≈9.8m/s2
高空物体的重力加速度:mg=Gg=G
加速度计构造的类型
A车的加速度。
显然,当速度变化量一样的时候,花时间较少的B车,加速度更大。也就说B车的启动性能相对A车好一些。因此,加速度是表示速度变化的快慢的物理量。
注意:
1.当物体的加速度保持大小和方向不变时,物体就做匀变速运动。如自由落体运动,平抛运动等。
当物体的加速度方向与初速度方向在同一直线上时,物体就做直线运动。如竖直上抛运动。
当物体的加速度方向与初速度方向在同一直线上时,物体就做直线运
2.加速度可由速度的变化和时间来计算,但决定加速度的因素是物体所受合力F
和物体的质量M。
3.加速度与速度无必然联系,加速度很大时,速度可以很小;速度很大时,加速度也可以很小。例如:炮弹在发射的瞬间,速度为0,加速度非常大;以高速直线匀速行驶的赛车,速度很大,但是由于是匀速行驶,速度的变化量是零,因此它的加速度为零。
4.加速度为零时,物体静止或做匀速直线运动(相对于同一参考系)。任何复杂的运动都可以看作是无数的匀速直线运动和匀加速运动的合成。
5.加速度因参考系(参照物)选取的不同而不同,一般取地面为参考系。
6.当运动的方向与加速度的方向之间的夹角小于90°时,即做加速运动,加速度是正数;反之则为负数。
特别地,当运动的方向与加速度的方向之间的夹角恰好等于90°时,物体既不加速也不减速,而是匀速率的运动。如匀速圆周运动。
7.力是物体产生加速度的原因,物体受到外力的作用就产生加速度,或者说力是物体速度变化的原因。说明
当物体做加速运动(如自由落体运动)时,加速度为正值;当物体做减速运动(如竖直上抛运动)时,加速度为负值。
8.加速度的大小比较只比较其绝对值。物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.
1.物质与运动
世界是物质的,而物质是运动的。运动是物质的存在方式和根本属性。恩格斯说:“运动,就它被理解为存在方式,被理解为物质的固有属性这一最一般的意义来说,囊括宇宙中发生的一切变化和过程,从单纯的位置变动起直到思维。”运动是标志一切事物和现象的变化及其过程的哲学范畴。
物质和运动是不可分割的,一方面,运动是物质的存在方式和根本属性,物质是运动着的物质,脱离运动的物质是不存在的,设想不运动的物质,将导致形而上学。另一方面,物质是一切运动变化和发展过程的实在基础和承担者,世界上没有离开物质的运动,任何形式的运动,都有它的物质主体,设想无物质的运动,将导致唯心主义。
2.运动与静止
物质世界的运动是绝对的,而物质在运动过程中又有某种暂时的静止,静止是相对的。静止是物质运动在一定条件下的稳定状态,包括空间位置和根本性质暂时未变这样两种运动的特殊状态。运动的绝对性体现了物质运动的变动性、无条件性。静止的相对性体现了物质运动的稳定性、有条件性。运动和静止相互依赖、相互渗透、相互包含,“动中有静、静中有动”。无条件的绝对运动和有条件的相对静止构成了事物的矛盾运动。只有把握了运动和静止的辩证关系,才能正确理解物质世界及其运动形式的多样性,才能理解认识和改造世界的可能性。
3.时间和空间
时间和空间是物质运动的存在形式。物质运动与时间和空间的不可分割证明了时间和空间的客观性。
时间是指物质运动的持续性、顺序性,特点是一维性。
空间是指物质运动的广延性、伸张性,特点是三维性。
物质运动总是在一定的时间和空间中进行的,没有离开物质运动的“纯粹”时间和空间,也没有离开时间和空间的物质运动。具体物质形态的时空是有限的,而整个物质世界的时空是无限的;物质运动时间和空间的客观实在性是绝对的,物质运动时间和空间的具体特性是相对的。一切以时间、地点、条件为转移,具体问题具体分析,是马克思主义的活的灵魂。物质、运动、时间、空间具有内在的统一性。
4.时间与时刻
1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。
△t=t2—t1
2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。
3.通常以问题中的初始时刻为零点。
5.路程和位移
1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。
2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。
3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。
4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。
A.牛顿第一定律(惯性定律)
1.内容:一切物体总保持匀速运动状态或静止状态,知道外力迫使它改变之中状态为止。
2.一切物体都有保持匀速直线运动状态或静止状态的特性。
3.物体运动状态的改变需要外力。
4.惯性的定义:物体的这种保持原来的匀速直线运动或静止状态的性质叫做惯性。
5.一切物体都具有惯性,物体的运动并不需要力来维持。
6.惯性是物质的固有属性,不论物体处于什么状态,都具有惯性。
B.牛顿第二定律
1.内容:物体的加速度跟所受的合外力大小成正比,跟物体的'质量成反比,加速度的方向跟合外力的方向相.
2.表达式:F=ma
(1)定律的表达式虽写成F=ma,但不能认为物体所受外力大小与加速度大小成正比,与物体质量成正比。
(2)式中的F是物体所受的合外力,而不是其中的某一个力?当然如果F是某一个力或某一方向的分量,其加速度也是该力单独产生的或者是在某一方向上产生的
3.注意
(1)如果合外力的方向与物体运动的方向相同,则加速度的方向与运动方向相同,这时物体做匀加速直线运动。
(2)如果合外力的方向与物体运动的方向相反,则加速度的方向与运动方向相反,这时物体做减速运动。
(3)如果合外力不变(恒定),则加速度也不变(恒定),这时物体做匀变速直线运动。
(4)如果合外力为零,则加速度也为零,这时物体做匀速直线运动或处于静止状态。
C.牛顿第三定律
1.两个物体之间力的作用总是相互的。我们把其中一个力叫做作用力,另一个力就叫做反作用力。
2.作用力与反作用力的特点
(1)作用在两个物体上
(2)具有同种性质
(3)同时产生,同时消失。
(4)在同一直线上,方向相反。
加速度-加速运动与减速运动
物体运动时,如果加速度不为零,则处于加速状态。若加速度大于零,则为正加速;若加速度小于零,则为负加速(即速度减至0后反向加速)。(提示:物理中的符号不同于数学中的符号,在+、-号只代表是的标量,在物理中+、-号部分代表单纯的标量,还有部分还代表的像方向啦什么的矢量)
V=v末—v初
加速度公式:a=△V/△t
加速度-曲线加速运动
在加速度保持不变的时候,物体也有可能做曲线运动。比如,当你把一个物体沿水平方向用力抛出时,你会发现,这个物体离开桌面以后,在空中划过一条曲线,落在了地上。
物体在出手以后,受到的只有竖直向下的重力,因此加速度的方向和大小都不改变。但是物体由于惯性还在水平方向上以出手速度运动。这时,物体的速度方向与加速度方向就不在同一直线上了。物体就会往力的方向偏转,划过一条往地面方向偏转的曲线。
但是这个时候,由于重力大小不变,因此加速度大小也不变。物体仍然做的是匀加速运动,但不过是匀加速曲线运动。
加速度-小问题——加速度单位的来历
根据我们高中的课本描述,有加速度a=(Δv)/(Δt)=(v1-v2)/t,因为速度(v)的单位是m/s,时间(t)的单位是s,于是将m/s与s相除,得到的就是它的单位:m/s^2.
重力
定义:由于受到地球的吸引而使物体受到的力叫重力。
说明:
①地球附近的物体都受到重力作用。
②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。
③重力的施力物体是地球。
④在两极时重力等于物体所受的万有引力,在其它位置时不相等。
(1)重力的大小:G=mg
说明:
①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。
②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。
③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。
(2)重力的方向:竖直向下(即垂直于水平面)
说明:
①在两极与在赤道上的物体,所受重力的方向指向地心。
②重力的方向不受其它作用力的影响,与运动状态也没有关系。
(3)重心:物体所受重力的作用点。
重心的确定:
①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。
②质量分布不均匀的物体的重心与物体的形状、质量分布有关。
③薄板形物体的重心,可用悬挂法确定。
说明:
①物体的重心可在物体上,也可在物体外。
②重心的位置与物体所处的位置及放置状态和运动状态无关。
③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。
高一物理知识点总结梳理5篇分享
牛顿运动定律的应用
1、运用牛顿第二定律解题的基本思路
(1)通过认真审题,确定研究对象.
(2)采用隔离体法,正确受力分析.
(3)建立坐标系,正交分解力.
(4)根据牛顿第二定律列出方程.
(5)统一单位,求出答案.
2、解决连接体问题的基本方法是:
(1)选取的研究对象.选取研究对象时可采取“先整体,后隔离”或“分别隔离”等方法.一般当各部分加速度大小、方向相同时,可当作整体研究,当各部分的加速度大小、方向不相同时,要分别隔离研究.
(2)对选取的研究对象进行受力分析,依据牛顿第二定律列出方程式,求出答案.
3、解决临界问题的基本方法是:
(1)要详细分析物理过程,根据条件变化或随着过程进行引起的受力情况和运动状态变化,找到临界状态和临界条件.
(2)在某些物理过程比较复杂的情况下,用极限分析的方法可以尽快找到临界状态和临界条件.
易错现象:
(1)加速系统中,有些同学错误地认为用拉力F直接拉物体与用一重力为F的物体拉该物体所产生的加速度是一样的。
(2)在加速系统中,有些同学错误地认为两物体组成的系统在竖直方向上有加速度时支持力等于重力。
(3)在加速系统中,有些同学错误地认为两物体要产生相对滑动拉力必须克服它们之间的静摩擦力。
质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs4.上升高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g(从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
1、电场线:用来形象描述电场的假想曲线,是由法拉第引入的。
理解:①、起始于正电荷(无穷远处),终止于负电荷(无穷远处),不是闭合曲线,不相交。
②、电场线上一点的切线方向为该点场强方向。
③、电场线的疏密程度反映了场强的大小。
④、匀强电场的电场线是平行等距的直线。
⑤、沿电场线方向电势逐点降低,是电势最低最快的方向。
⑦、电场线并非电荷运动的轨迹。
2、等势面:电势相等的点构成的面有以下特征;
①在同一等势面上移动电荷电场力不做功。
②等势面与电场力垂直。
③电场中任何两个等势面不相交。
④电场线由高等势面指向低等势面。
⑤规定:相邻等势面间的电势差相差,所以等势面的疏密反映了场强的大小(匀强点电荷电场等势面的特点)
⑥几种等势面的性质
A、等量同种电荷连线和中线上
连线上:中点电势最小
中线上:由中点到无穷远电势逐渐减小,无穷远电势为零。
B、等量异种电荷连线上和中线上
连线上:由正电荷到负电荷电势逐渐减小。
中线上:各点电势相等且都等于零。
3、电场力做功与电势能的关系:
①、通过电场力做功说明:电场力做正功,电势能减小。
电场力做负功,电势能增大。
②、正电荷:顺着电场线移动时,电势能减小。
逆着电场线移动时,电势能增加。
负电荷:顺着电场线移动时,电势能增加。
逆着电场线移动时,电势能减小。
③、求电荷在电场中A、B两点具有的电势能高低
将电荷由A点移到B点根据电场力做功情况判断,电场力做正功,电势能减小,电荷在A点电势能大于在B点的电势能,反之电场力做负功,电势能增加,电荷在B点的电势能小于在B点的电势能
④、在正电荷产生的电场中正电荷在任意一点具有的电势能都为正,负电荷在任一点具有的电势能都为负。
在负电荷产生的电场中正电荷在任意一点具有的电势能都为负,负电荷在任意一点具有的电势能都为正。
考点1:共点力的平衡条件
平衡状态的定义:
如果一个物体在力的作用下保持静止或者匀速直线运动的状态,我们就说这个物体处于平衡状态。
平衡状态的条件:
在共点力作用下,物体的平衡条件是合力为零。
考点2:超重和失重
超重:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象。
失重:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象。
考点3:从动力学看自由落体运动
物体做自由落体运动的条件是:
1,物体是从静止开始下落的,即运动的初速度为零。
2,运动过程中它只受到重力的作用。
1、运用牛顿第二定律解题的基本思路
(1)通过认真审题,确定研究对象.
(2)采用隔离体法,正确受力分析.
(3)建立坐标系,正交分解力.
(4)根据牛顿第二定律列出方程.
(5)统一单位,求出答案.
2、解决连接体问题的基本方法是:
(1)选取的研究对象.选取研究对象时可采取“先整体,后隔离”或“分别隔离”等方法.一般当各部分加速度大小、方向相同时,可当作整体研究,当各部分的加速度大小、方向不相同时,要分别隔离研究.
(2)对选取的研究对象进行受力分析,依据牛顿第二定律列出方程式,求出答案.
3、解决临界问题的基本方法是:
(1)要详细分析物理过程,根据条件变化或随着过程进行引起的受力情况和运动状态变化,找到临界状态和临界条件.
(2)在某些物理过程比较复杂的情况下,用极限分析的方法可以尽快找到临界状态和临界条件.
易错现象:
(1)加速系统中,有些同学错误地认为用拉力F直接拉物体与用一重力为F的物体拉该物体所产生的加速度是一样的。
(2)在加速系统中,有些同学错误地认为两物体组成的系统在竖直方向上有加速度时支持力等于重力。
(3)在加速系统中,有些同学错误地认为两物体要产生相对滑动拉力必须克服它们之间的静摩擦力。
功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的`动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90o做正功;90o<α≤180o做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
万有引力定律及其应用
1.万有引力定律:引力常量G=6.67×N?m2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=Gg=G≈9.8m/s2
高空物体的重力加速度:mg=Gg=G<9.8m/s2
4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是的。
由mg=mv2/R或由==7.9km/s
5.开普勒三大定律
6.利用万有引力定律计算天体质量
7.通过万有引力定律和向心力公式计算环绕速度
8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)
功、功率、机械能和能源
1.做功两要素:力和物体在力的方向上发生位移
2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)
3.物体做正功负功问题(将α理解为F与V所成的角,更为简单)
(1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,
如小球在水平桌面上滚动,桌面对球的支持力不做功。
(2)当α
如人用力推车前进时,人的推力F对车做正功。
(3)当α大于90度小于等于180度时,cosα<0,w<0.这表示力f对物体做负功。
如人用力阻碍车前进时,人的推力F对车做负功。
一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。
例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功
4.动能是标量,只有大小,没有方向。表达式
5.重力势能是标量,表达式
(1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。
(2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。
6.动能定理:
W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度
解答思路:
①选取研究对象,明确它的运动过程。
②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。
③明确物体在过程始末状态的动能和。
④列出动能定理的方程。
7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)
解题思路:
①选取研究对象----物体系或物体
②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。
③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。
④根据机械能守恒定律列方程,进行求解。
8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负
9.额定功率指机器正常工作时的输出功率,也就是机器铭牌上的标称值。
实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。
10、能量守恒定律及能量耗散
1、在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。
2、物体做直线或曲线运动的条件:
(已知当物体受到合外力F作用下,在F方向上便产生加速度a)
(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;
(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。
3、物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。
4、平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。
两分运动说明:
(1)在水平方向上由于不受力,将做匀速直线运动;
(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。
5、以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下。
6、①水平分速度:②竖直分速度:③t秒末的合速度
④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示
7、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
8、描述匀速圆周运动快慢的物理量
(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上
9、匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变
(2)角速度:ω=φ/t(φ指转过的角度,转一圈φ为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的
(3)周期T,频率f=1/T
(4)线速度、角速度及周期之间的关系:
10、向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。
11、向心加速度:描述线速度变化快慢,方向与向心力的方向相同,
12、注意的结论:
(1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。
(3)做匀速圆周运动的物体受到的合外力就是向心力。
13、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动
1.功
(1)功的概念:一个物体受到力的作用,如果在力的方向上发生一段位移,我们就说这个力对物体做了功.力和在力的方向上发生位移,是做功的两个不可缺少的因素。
(2)功的计算式:力对物体所做的功的大小,等于力的大小、位移的大小、力和位移的夹角的余弦三者的乘积:W=Fscosα。
(3)功的单位:在国际单位制中,功的单位是焦耳,简称焦,符号是J.1J就是1N的力使物体在力的方向上发生lm位移所做的功。
2.功的计算
⑴恒力的功:根据公式W=Fscosα,当00≤a<900时,cosα>0,W>0,表示力对物体做正功;当α=900时,cosα=0,W=0,表示力的方向与位移的方向垂直,力不做功;当900<α<1800时,cosα<0,W<0,表示力对物体做负功,或者说物体克服力做了功。
(2)合外力的功:等于各个力对物体做功的代数和,即:W合=W1+W2+W3+……
(3)用动能定理W=ΔEk或功能关系求功.功是能量转化的量度.做功过程一定伴随能量的转化,并且做多少功就有多少能量发生转化。
3.功和冲量的比较
(1)功和冲量都是过程量,功表示力在空间上的积累效果,冲量表示力在时间上的积累效果。
(2)功是标量,其正、负表示是动力对物体做功还是物体克服阻力做功.冲量是矢量,其正、负号表示方向,计算冲量时要先规定正方向。
(3)做功的多少由力的大小、位移的大小及力和位移的夹角三个因素决定.冲量的大小只由力的大小和时间两个因素决定.力作用在物体上一段时间,力的冲量不为零,但力对物体做的功可能为零。
4.一对作用力和反作用力做功的特点
⑴一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零。
⑵一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。
匀速直线运动的速度与时间的关系
●匀速直线运动
1、定义:物体沿着直线运动,而且保持加速度不变,这种运动叫做匀变速直线运动。
2、匀变速直线运动的分类:
3、匀变速直线运动的v-t图象
实验小车的v-t图象是一条倾斜直线。由此可知,无论Δt取何值,无论在什么时间阶段,Δt对应的速度变化Δv都相同,即Δv/Δt不变,则物体的 加速度不变。所以匀变速直线运动的v-t图象是一条倾斜直线。在数学函数图象中,Δv/Δt叫做图象的斜率,故v-t图象的斜率表示物体做匀变速直线运动 的加速度的大小。
一、曲线运动
(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。
(2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。
(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。
二、运动的合成与分解
1、深刻理解运动的合成与分解
(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。
运动的合成与分解基本关系:
1、分运动的独立性;
2、运动的等效性(合运动和分运动是等效替代关系,不能并存);
3、运动的等时性;
4、运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)
(2)互成角度的两个分运动的合运动的判断
合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。
①两个直线运动的合运动仍然是匀速直线运动。
②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。
③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。
④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。
2、怎样确定合运动和分运动
①合运动一定是物体的实际运动
②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。
③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。
3、绳端速度的分解
此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)
4、小船渡河问题
(1)L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,
(2)渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0.
所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。
(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs.
一、知识点
(一)曲线运动的条件:合外力与运动方向不在一条直线上
(二)曲线运动的研究方法:运动的合成与分解(平行四边形定则、三角形法则)
(三)曲线运动的分类:合力的性质(匀变速:平抛运动、非匀变速曲线:匀速圆周运动)
(四)匀速圆周运动
1受力分析,所受合力的特点:向心力大小、方向
2向心加速度、线速度、角速度的定义(文字、定义式)
3向心力的公式(多角度的:线速度、角速度、周期、频率、转)
(五)平抛运动
1受力分析,只受重力
2速度,水平、竖直方向分速度的表达式;位移,水平、竖直方向位移的表达式
3速度与水平方向的夹角、位移与水平方向的夹角
(五)离心运动的定义、条件
二、考察内容、要求及方式
1曲线运动性质的判断:明确曲线运动的条件、牛二定律(选择题)
2匀速圆周运动中的动态变化:熟练掌握匀速圆周运动各物理量之间的关系式(选择、填空)
3匀速圆周运动中物理量的计算:受力分析、向心加速度的几种表示方式、合力提供向心力(计算题)
3运动的合成与分解:分运动与和运动的等时性、等效性(选择、填空)
4平抛运动相关:平抛运动中速度、位移、夹角的计算,分运动与和运动的等时性、等效性(选择、填空、计算)
5离心运动:临界条件、静摩擦力、匀速圆周运动相关计算(选择、计算)
电场
1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。
2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。
电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。
场能性质是电势,场线方向电势降。场力做功是qU,动能定理不能忘。
4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。
1.精选最全高一物理知识点总结归纳5篇
2.精选高一物理知识点总结归纳5篇
3.最新高一物理知识点总结归纳5篇
4.高一物理知识点总结归纳5篇
5.最新高一物理知识点总结5篇
认识形变
1。物体形状回体积发生变化简称形变。
2。分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。
按效果分:弹性形变、塑性形变
3。弹力有无的判断:1)定义法(产生条件)
2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。
3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。
弹性与弹性限度
1。物体具有恢复原状的性质称为弹性。
2。撤去外力后,物体能完全恢复原状的形变,称为弹性形变。
3。如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。
探究弹力
1。产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。
2。弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。
绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。
弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
3。在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。
F=kx
4。上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。
5。弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2
第二节研究摩擦力
滑动摩擦力
1。两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。
2。在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。
3。滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN
4。μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。
5。滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。
6。条件:直接接触、相互挤压(弹力),相对运动/趋势。
7。摩擦力的大小与接触面积无关,与相对运动速度无关。
8。摩擦力可以是阻力,也可以是动力。
9。计算:公式法/二力平衡法。
研究静摩擦力
1。当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。
2。物体所受到的静摩擦力有一个限度,这个值叫静摩擦力。
3。静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。
4。静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm
5。静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0·N(μ≤μ0)
6。静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。
第三节力的等效和替代
力的图示
1。力的图示是用一根带箭头的线段(定量)表示力的三要素的方法。
2。图示画法:选定标度(同一物体上标度应当统一),沿力的方向从力的作用点开始按比例画一线段,在线段末端标上箭头。
3。力的示意图:突出方向,不定量。
力的等效/替代
1。如果一个力的作用效果与另外几个力的共同效果作用相同,那么这个力与另外几个力可以相互替代,这个力称为另外几个力的合力,另外几个力称为这个力的分力。
2。根据具体情况进行力的替代,称为力的合成与分解。求几个力的合力叫力的合成,求一个力的分力叫力的分解。合力和分力具有等效替代的关系。
3。实验:平行四边形定则:P58
第四节力的合成与分解
力的平行四边形定则
1。力的平行四边形定则:如果用表示两个共点力的线段为邻边作一个平行四边形,则这两个邻边的对角线表示合力的大小和方向。
2。一切矢量的运算都遵循平行四边形定则。
合力的计算
1。方法:公式法,图解法(平行四边形/多边形/△)
2。三角形定则:将两个分力首尾相接,连接始末端的有向线段即表示它们的合力。
3。设F为F1、F2的合力,θ为F1、F2的夹角,则:
F=√F12+F22+2F1F2cosθtanθ=F2sinθ/(F1+F2cosθ)
当两分力垂直时,F=F12+F22,当两分力大小相等时,F=2F1cos(θ/2)
4。1)|F1—F2|≤F≤|F1+F2|
2)随F1、F2夹角的增大,合力F逐渐减小。
3)当两个分力同向时θ=0,合力:F=F1+F2
4)当两个分力反向时θ=180°,合力最小:F=|F1—F2|
5)当两个分力垂直时θ=90°,F2=F12+F22
分力的计算
1。分解原则:力的实际效果/解题方便(正交分解)
2。受力分析顺序:G→N→F→电磁力
第五节共点力的平衡条件
共点力
如果几个力作用在物体的同一点,或者它们的作用线相交于同一点(该点不一定在物体上),这几个力叫做共点力。
寻找共点力的平衡条件
1。物体保持静止或者保持匀速直线运动的状态叫平衡状态。
2。物体如果受到共点力的作用且处于平衡状态,就叫做共点力的平衡。
3。二力平衡是指物体在两个共点力的作用下处于平衡状态,其平衡条件是这两个离的大小相等、方向相反。多力亦是如此。
4。正交分解法:把一个矢量分解在两个相互垂直的坐标轴上,利于处理多个不在同一直线上的矢量(力)作用分解。
第六节作用力与反作用力
探究作用力与反作用力的关系
1。一个物体对另一个物体有作用力时,同时也受到另一物体对它的作用力,这种相互作用力称为作用力和反作用力。
2。力的性质:物质性(必有施/手力物体),相互性(力的作用是相互的)
3。平衡力与相互作用力:
同:等大,反向,共线
异:相互作用力具有同时性(产生、变化、小时),异体性(作用效果不同,不可抵消),二力同性质。平衡力不具备同时性,可相互抵消,二力性质可不同。
牛顿第三定律
1。牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等、方向相反。
2。牛顿第三定律适用于任何两个相互作用的物体,与物体的质量、运动状态无关。二力的产生和消失同时,无先后之分。二力分别作用在两个物体上,各自分别产生作用效果。
万有引力定律及其应用
1.万有引力定律:引力常量G=6.67×N?m2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=Gg=G≈9.8m/s2
高空物体的重力加速度:mg=Gg=GG,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
(1)滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。
说明:①摩擦力的产生是由于物体表面不光滑造成的。
②摩擦力具有相互性。
ⅰ滑动摩擦力的产生条件:
A、两个物体相互接触;
B、两物体发生形变;
C、两物体发生了相对滑动;
D、接触面不光滑。
ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。
说明:
①“与相对运动方向相反”不能等同于“与运动方向相反”
②滑动摩擦力可能起动力作用,也可能起阻力作用。
ⅲ滑动摩擦力的大小:F=μFN
说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。
②μ与接触面的材料、接触面的粗糙程度有关,无单位。
③滑动摩擦力大小,与相对运动的速度大小无关。
ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。
ⅴ滚动摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。
(2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。
说明:静摩擦力的作用具有相互性。
ⅰ静摩擦力的产生条件:
A、两物体相接触;
B、相接触面不光滑;
C、两物体有形变;
D、两物体有相对运动趋势。
ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。
说明:
①运动的物体可以受到静摩擦力的作用。
②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角θ。
③静摩擦力可以是阻力也可以是动力。
ⅲ静摩擦力的大小:两物体间的静摩擦力的取值范围0
说明:
①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的“需要”取值,所以与正压力无关。
②静摩擦力大小决定于正压力与静摩擦因数(选学)Fm=μsFN。
ⅳ效果:总是阻碍物体间的相对运动的趋势。
对物体进行受力分析是解决力学问题的基础,是研究力学的重要方法,受力分析的程序是:
1、根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象可以是单个物体,也可以是几个物体组成的系统。
2、把研究对象从周围的环境中隔离出来,按照先场力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。
3、对物体受力分析时,应注意一下几点:
(1)不要把研究对象所受的力与它对其它物体的作用力相混淆。
(2)对于作用在物体上的每一个力都必须明确它的来源,不能无中生有。
(3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。
力分解问题的关键是根据力的作用效果画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题
1、参考系:描述一个物体的运动时,选来作为标准的的另外的物体。
运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。
参考系的选择是任意的,被选为参考系的物体,我们假定它是静止的。选择不同的物体作为参考系,可能得出不同的结论,但选择时要使运动的描述尽量的简单。
通常以地面为参考系。
2、质点:
①定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。
②物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。
③物体可被看做质点的几种情况:
(1)平动的物体通常可视为质点.
(2)有转动但相对平动而言可以忽略时,也可以把物体视为质点.
(3)同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以.
注(1)不能以物体的大小和形状为标准来判断物体是否可以看做质点,关键要看所研究问题的性质.当物体的大小和形状对所研究的问题的影响可以忽略不计时,物体可视为质点.
(2)质点并不是质量很小的点,要区别于几何学中的“点”.
3、时间和时刻:
时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。
4、位移和路程:
位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;
路程是质点运动轨迹的长度,是标量。
5、速度:
用来描述质点运动快慢和方向的物理量,是矢量。
(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为,方向与位移的方向相同。平均速度对变速运动只能作粗略的描述。
(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。
6、加速度:用量描述速度变化快慢的的物理量。
加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。
易错现象
1、忽略位移、速度、加速度的矢量性,只考虑大小,不注意方向。
2、混淆速度、速度的增量和加速度之间的关系。
力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。
按照力命名的依据不同,可以把力分为:
①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)
②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。
力的作用效果:
①形变;
②改变运动状态.
力的图示
1.力的图示是用一根带箭头的线段(定量)表示力的三要素的方法。
2.图示画法:选定标度(同一物体上标度应当统一),沿力的方向从力的作用点开始按比例画一线段,在线段末端标上箭头。
3.力的示意图:突出方向,不定量。
力的等效/替代
1.如果一个力的作用效果与另外几个力的共同效果作用相同,那么这个力与另外几个力可以相互替代,这个力称为另外几个力的合力,另外几个力称为这个力的分力。
2.根据具体情况进行力的替代,称为力的合成与分解。求几个力的合力叫力的合成,求一个力的分力叫力的分解。合力和分力具有等效替代的关系。
3.实验:平行四边形定则:P58
第四节力的合成与分解
力的平行四边形定则
1.力的平行四边形定则:如果用表示两个共点力的线段为邻边作一个平行四边形,则这两个邻边的对角线表示合力的大小和方向。
2.一切矢量的运算都遵循平行四边形定则。
合力的计算
1.方法:公式法,图解法(平行四边形/多边形/△)
2.三角形定则:将两个分力首尾相接,连接始末端的有向线段即表示它们的合力。
3.设F为F1、F2的合力,θ为F1、F2的夹角,则:
F=√F12+F22+2F1F2cosθtanθ=F2sinθ/(F1+F2cosθ)
当两分力垂直时,F=F12+F22,当两分力大小相等时,F=2F1cos(θ/2)
4.1)|F1—F2|≤F≤|F1+F2|
2)随F1、F2夹角的增大,合力F逐渐减小。
3)当两个分力同向时θ=0,合力:F=F1+F2
4)当两个分力反向时θ=180°,合力最小:F=|F1—F2|
5)当两个分力垂直时θ=90°,F2=F12+F22
分力的计算
1.分解原则:力的实际效果/解题方便(正交分解)
2.受力分析顺序:G→N→F→电磁力
1、力:
力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。
按照力命名的依据不同,可以把力分为
①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)
②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。
力的作用效果:
①形变;②改变运动状态.
2、重力:
由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定,
注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力.由于重力远大于向心力,一般情况下近似认为重力等于万有引力.
3、弹力:
(1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。
(2)条件:①接触;②形变。但物体的形变不能超过弹性限度。
(3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)
(4)大小:
①弹簧的弹力大小由F=kx计算,
②一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定.
本学期,我担任高一254班和256班的物理教学,为了提高自我的教学水平,在本学期初我就下定决心从各方面严格要求自我,在教学上虚心向老教师请教,结合本校和班级学生的实际情景,针对性的开展教学工作,使工作有计划,有组织,有步骤。经过了一个学期,我对教学工作有了如下感想:
一、认真备课,做到既备学生又备教材与备教法。
本学期我根据教材资料及学生的实际情景设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先研究到,认真写好教案。每一课都做到“有备而去”,每堂课都在课前做好充分的准备,课后及时对该课作出小结,并认真整理每一章节的知识要点,帮忙学生进行归纳总结。
二、增强上课技能,提高教学质量。
增强上课技能,提高教学质量是我们每一名新教师不断努力的目标。我追求课堂讲解的清晰化,条理化,准确化,条理化,情感化,生动化;努力做到知识线索清晰,层次分明,教学言简意赅,深入浅出。我深知学生的积极参与是教学取得较好的效果的关键。所以在课堂上我异常注意调动学生的积极性,加强师生交流,充分体现学生在学习过程中的主动性,让学生学得简便,学得愉快。他们强调让我必须要注意精讲精练,在课堂上讲得尽量少些,而让学生自我动口动手动脑尽量多些;同时在每一堂课上都充分研究每一个层次的学生学习需求和理解本事,让各个层次的学生都得到提高。
三、虚心向其他教师学习,在教学上做到有疑必问。
在每个章节的学习上都积极征求其他有经验教师的意见,学习他们的方法。同时多听老教师的课,做到边听边学,给自我不断充电,弥补自我在教学上的不足,并常请备课组长和其他教师来听课,征求他们的意见,改善教学工作。
四、认真批改作业、布置作业有针对性,有层次性。
作业是学生对所学知识巩固的过程。为了做到布置作业有针对性,有层次性,我常常多方面的搜集资料,对各种辅导资料进行筛选,力求每一次练习都能让学生起到最大的效果。同时对学生的作业批改及时、认真,并分析学生的作业情景,将他们在作业过程出现的问题及时评讲,并针对反映出的情景及时改善自我的教学方法,做到有的放矢。
五、做好课后辅导工作,注意分层教学。
在课后,为不一样层次的学生进行相应的辅导,以满足不一样层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想与方法的辅导,要提高后进生的成绩,首先要解决他们心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。要经过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情,而是充满乐趣的,从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原先的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度一部分。在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的绊脚石,在做好后进生的转化工作时,要异常注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得简便,提高也快,兴趣和求知欲也会随之增加。
六、积极推进素质教育。
目前的考试模式仍然比较传统,这决定了教师的教学模式要停留在应试教育的层次上,为此,我在教学工作中注意了学生本事的培养,把传授知识、技能和发展智力、本事结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新本事。让学生的各种素质都得到有效的发展和培养。
然而,在肯定成绩、总结经验的同时,我清楚地认识到我所获得的教学经验还是肤浅的,在教学中存在的问题也不容忽视,也有一些困惑有待解决。例如在课堂教学中,我要求在学生课堂上开展小组合作学习,可有的学生不参与讨论,有的虽然参与小组合作了,却不积极发言。合作学习还是没能真正地开始实施。
今后我将努力工作,积极向老教师学习以提高自我的教学水平。
以上几点便是我的一点心得,期望能发扬优点,克服不足,总结经验教训,为今后的教育教学工作积累经验,以便尽快地提高自我的水平。
自由落体运动的定义
从静止出发,只在重力作用下而降落的运动模式,叫自由落体运动。
自由落体运动是最典型的匀变速直线运动;是初速度为零,加速度为g的匀加速直线运动。
地球表面附近的上空可看作是恒定的重力场。如不考虑大气阻力,在该区域内的自由落体运动的方向是竖直向下的(并非指向地心),加速度为重力加速度g的匀加速直线运动。
只有在赤道上或者两极上,自由落体运动的方向(也就是重力的方向)才是指向地球中心的。
g≈9.8m/s^2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
自由落体运动的基本公式
(1)Vt=gt
(2)h=1/2gt^2
(3)Vt^2=2gh
这里的h与x同样都是指位移,一般在自由落体中用h表示数值方向的位移量。
自由落体运动的研究先驱者
对自由落体最先研究的是古希腊的科学家亚里士多德,他提出:物体下落的快慢是由物体本身的重量决定的,物体越重,下落得越快;反之,则下落得越慢。
亚里士多德,前384年4月23日-前322年3月7日,古希腊哲学家,柏拉图的学生、亚历山大大帝的老师。
他的著作包含许多学科,包括了物理学、形而上学、诗歌(包括戏剧)、生物学、动物学、逻辑学、政治、政府、以及_学。和柏拉图、苏格拉底(柏拉图的老师)一起被誉为西方哲学的奠基者。亚里士多德的著作是西方哲学的第一个广泛系统,包含道德、美学、逻辑和科学、政治和玄学。
伽利略是意大利天文学家,也是世界物理学家。他于1564年诞生在意大利北部的比萨市,1642年1月8日去世,终年78岁。他毕生致力于科学事业,不仅为我们留下了时钟、望远镜和众多的科学专著,而且还为破除宗教迷信、科学偏见作出了杰出的贡献。
伽利略在1638年写的《两种新科学的对话》一书中指出:根据亚里士多德的论断,一块大石头的下落速度要比一块小石头的下落速度大。假定大石头的下落速度为8,小石头的下落速度为4,当我们把两块石头拴在一起时,下落快的会被下落慢的拖着而减慢,下落慢的会被下落快的拖着而加快,结果整个系统的下落速度应该小于8。但是两块石头拴在一起,加起来比大石头还要重,因此重物体比轻物体的下落速度要小。这样,就从重物体比轻物体下落得快的假设,推出了重物体比轻物体下落得慢的结论。亚里士多德的理论陷入了自相矛盾的境地。伽利略由此推断重物体不会比轻物体下落得快。伽利略的假设推导法,对物理思维方法起到了非常重要的作用。
伽利略曾在的比萨斜塔做了的自由落体试验,让两个体积相同,质量不同的球从塔顶同时下落,结果两球同时落地,以实践驳倒了亚里士多德的结论。但是后来经过历史的严格考证,伽利略并没有在比萨斜塔做实验,人们却还是把比萨斜塔当作对伽利略的纪念碑。
平抛运动
1.水平方向速度V_x=V_o2.竖直方向速度V_y=gt
3.水平方向位移S_x=V_ot4.竖直方向位移S_y=gt2/2
5.运动时间t=(2S_y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度V_t=(V_x2+V_y2)1/2=[V_o2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=V_y/V_x=gt/V_o
7.合位移S=(S_x2+S_y2)1/2,
位移方向与水平夹角α:tgα=S_y/S_x=gt/(2V_o)
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(S_y)决定与水平抛出速度无关。(3)θ与β的.关系为tgβ=2tgα。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/R=ω2R=(2π/T)2R4.向心力F心=mV2/R=mω2R=m(2π/T)2R
5.周期与频率T=1/f6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)
周期(T):秒(s)转速(n):r/s半径(R):米(m)线速度(V):m/s
角速度(ω):rad/s向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(4π2/GM)R:轨道半径T:周期K:常量(与行星质量无关)
2.万有引力定律F=Gm_1m_2/r2G=6.67×10-11N·m2/kg2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R2=mgg=GM/R2R:天体半径(m)
4.卫星绕行速度、角速度、周期V=(GM/R)1/2
ω=(GM/R3)1/2T=2π(R3/GM)1/2
5.第一(二、三)宇宙速度V_1=(g地
r地)1/2=7.9Km/sV_2=11.2Km/sV_3=16.7Km/s
6.地球同步卫星GMm/(R+h)2=m4π2(R+h)/T2
h≈36000km/h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的环绕速度和最小发射速度均为7.9Km/S.