日子在弹指一挥间就毫无声息的流逝,我们又将迎来新的喜悦、新的收获,该为自己下阶段的学习制定一个计划了。想学习拟定计划却不知道该请教谁?以下是人见人爱的小编分享的小学五年级数学下册教案(优秀6篇),如果对您有一些参考与帮助,请分享给最好的朋友。
学习内容:
课本第60—61页内容,练习十一第1—4题。
学习目标:
1.我能通过学习知道分数是怎样产生的。
2.我能在正确认识单位“1”的基础上,理解分数的意义。
学习重难点:
我能理解单位“1”及分数的意义。
课前准备:
正方形纸
学习过程:
一、导入新课
二、合作探究、检查独学
1.小组内检查独学部分的题目完成情况,质疑探讨。
2.自学课本第60、61页内容。根据自学内容我发现:
(1)分数是如何产生的?
(2)分数的意义是什么?
(3)什么是单位“1”?
(4)议一议:分数的分母和分子与什么有关系?结合你创造的分数,说一说分数表示的是什么?
3.小组内合作交流,小组代表展示、汇报。
4.总结升华:分数的定义是:把单位“1”( )若干份,表示这样的( )或者( )的数叫做分数。
5.我能行:完成课本第63页练习十一第1—4题。
教学目标
知识目标让学生了解体积的概念和体积单位,感知长方体和正方体体积单位的大小。
能力目标动手操作,正确推导出长方体和正方体的体积公式,并能熟练计算它们的体积。
情感目标进一步培养学生的动手能力、观察能力以及归纳推理能力,进一步发展他们的空间想象力,体验探索的乐趣。
重点:引导学生探索长方体体积的计算方法。
难点:理解长方体体积公式的意义。
教学过程
一、启发谈话,激趣引入
同学们,最近你们发现的城市有哪些变化呢?在城市里为什么要建这么多高楼大厦呢?如果建平房,会怎么样?
老师带来一件衣服,谁想试一试?(点名让一胖一瘦上来)问:同样一件衣服,为什么有的宽松,有的紧?(因为他们体型不一样,也就是占的空间不一样)这节课,我们就来研究跟空间有关的内容。板书课题:体积
二、学习“体积”、“体积单位”的概念
1、出示大、小苹果,问:哪只苹果占的空间大?你能从自己的身边选两件物体,比比它们的大小吗?
2、出示差不多大的土豆和一个长方体石块,你知道它们哪个大吗?那你有什么办法?
演示书上的实验,得出:土豆占的空间小,石块占的空间大。
3、师揭示:物体所占空间的大小,叫做物体的体积。土豆和石块相比,谁的体积大,谁的体积小?
4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。
5、学生汇报:
(1)常用的体积单位
(2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。
(3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。
6、摆一摆:用棱长是1厘米的正方体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材)
得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。
三、自主探究长方体和正方体体积公式
1、猜一猜:长方体和正方体体积跟什么可能有关?
2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出)●(的长方体的长、宽、高和体积。
3、小组合作:学生四人一小组操作并做好实验记录。
四、知识迁移推出正方体的体积公式
1、师:长方体和正方体之间有什么关系?
生:正方体是长、宽、高都相等的特殊的长方体。
师:根据这种关系,你能推导出正方体的体积公式吗?
2、师生共同归纳:正方体的体积=棱长×棱长×棱长
用字母表示为:V= a×a×a= a3
师强调:读作a的立方,表示3个a相乘。3 a表示3个a相加。
拓展应用学校要在操场修建一个长方体的沙坑,如果长6米,宽4米,里面要铺垫0。9米厚的沙子,需要多少立方米沙子?按每立方米沙子重1。7吨计算,这些沙子重多少吨?
总结这节课你有什么收获?你最高兴的是什么?你还有什么疑惑?
作业布置33页8、9题
板书设计长方体和正方体的体积
物体所占空间的大小,叫做物体的体积。
常用的体积单位有:立方米、立方分米、立方厘米。
小正方体的个数=每排个数×每层排数×层数
‖ ‖ ‖ ‖
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
V = a×a×a= a3
教学内容:
本节内容属北师大版小学数学五年级下册第四单元“长方体(二)”最后一节的内容:有趣的测量(求不规则物体的体积)。
教材分析:
本节课是在学生已经掌握了长方体和正方体的认识,长方体和正方体的表面积、体积的知识,了解了容积的内容的基础上呈现的。要使学生通过观察、比较,掌握不规则物体的体积的求法,拓展了学生的知识面,渗透了转化的思想。
学情分析:
本班级学生,大部分学习认真、踏实、自觉,基础扎实,好学上进,部分男生活泼好动,爱思考。对于探索数学问题有着极其浓厚的兴趣,喜欢自己动手解决问题。在他们身上还明显地存在着儿童的天性,好动、好奇等。对于本单元的知识,大部分学生掌握得比较扎实。
教学目标:
1、经历测量芒果、石头、水瓶的体积的实验过程,探索不规则物体体积的测量方法,渗透转化的思想。
2、握不规则物体的测量方法,并能测量不规则物体的体积。
3、践与探索过程中,尝试用多种方法解决实际问题,提高灵活解决实际问题的能力。
教学重点:
让学生掌握不规则物体体积的测量方法。
教学难点:
灵活运用“排水法”和“溢出法”解决实际问题。
教具准备:
魔方、芒果、圆柱体量杯、长方体水槽、石块、苹果醋若干瓶
教学过程:
一、 导入
1、同学们,周末老师在整理房间的时候,从柜子里发现了一个魔方,我特别喜欢。
从数学的角度来讲,魔方是一个什么样的物体?(正方体)
怎样求出这个正方体的体积呢?(板书:V正=a3)
它的棱长是10cm,体积是多少呢?(1000cm3)
2、除了正方体,你还会求哪些立体图形的体积?(板书:V长=abh)
3、像长方体和正方体这样,都能够直接通过公式求出它们的体积,这样的物体,我们把它们叫做“规则物体”。(板书:规则物体)
4、现在请同学们再观察老师手中的魔方,它还是正方体吗?(旋转一下)那它是什么形状的物体呢?
像这样,无法用语言准确地说出具体形状的一类物体,在我们的生活中随处可见,我们称它们为“不规则物体”。(板书:不)
5、现在这个魔方的体积是多少呢?(还是1000cm3)你是怎么想的?(板书:转化)
【设计意图:我用正方体魔方引入,把本节课主要用到的数学思想渗透给学生,为后面的实验做铺垫,同时又可以激发学生学习的积极性。】
6、魔方是一个比较特殊的物体。再看,现在老师手中拿的这个芒果也是一个不规则的物体,我们能直接把它转化成规则的物体吗?
那它的体积是多少,又该怎样求呢?
这节课,我们就通过有趣的测量,共同来研究不规则物体的体积。
二、新授
(一)测量芒果的体积
1、你想怎样测这个芒果的体积呢?(学生汇报)
2、桌面上,老师为每个小组准备了两种测量工具:量杯和一个长方体容器。
你认为选择哪一种测量工具,能够很快地求出芒果的体积?为什么?(选择量杯,因为它有刻度)
3、这样做确实能比较快的求出芒果的体积,你来看(ppt演示)
量杯中装有一部分水,正好是300mL,这300mL指的是什么?(水的体积)
仔细观察,将芒果放入水中后,水面发生了怎样的变化?为什么水面会上升呢?那么,现在的400mL指的是什么?(水和芒果的体积)
现在,你知道芒果的体积是多少吗?
100是芒果的体积,它也是什么的体积?(上升的水的体积)
4、在刚才的实验中,我们借助量杯完成了一次转化。是将什么转化成了什么呢?(将芒果的体积转化成了上升的水的体积,也可以说是将不规则的芒果转化成了规则的圆柱体)
5、像刚才这样测量不规则物体体积的方法,我们把它叫做“排水法”。
【设计意图:教师引导学生观察第一个实验:用量杯和水试一试、测一测芒果的体积。学生通过讨论、交流观察等一系列的活动,让学生初步的明白应用转化的思想,可以把不规则物体的体积转化为上升部分的水的体积,也就是测不规则物体体积的基本方法。】
(二)测量石头的体积
1、现在老师也想进行一次测量,我想测的是这块石头的体积。
我应该选择什么工具来测量呢?为什么?(选择长方体容器,因为石头太大了)
2、用这个长方体容器怎样求出这块石头的体积呢?在小组内和你的同伴说一说。(讨论后,学生汇报)
3、在测量的时候应该注意什么?(强调:要从里面测量)
出示数据:长25cm,宽18cm,水面高度8cm。慢慢将石头放入水中,观察水面发生了什么变化?为什么?
这样放行不行(竖着)?为什么?(石头没有完全浸入水中)
石头已经完全浸入水中,此时水面的高度是10cm
4、你能根据屏幕上显示的数据计算出这块石头的体积吗?(学生动笔计算)
5、刚才,在我们的共同努力下,测得了这块石头的体积。
在这次实验中,我们又完成了一次转化,是将什么转化成了什么?(将石头的体积转化成了上升的水的体积,也可以说是将不规则的石头转化成了规则的长方体)
【设计意图:学生有了第一个实验的基础,教师调换实验用品进行第二个实验,把量杯换为长方体容器来进一步探索求不规则物体的体积。学生有了第一个实验的基础,会很容易的探索出把不规则物体的体积转化为可计算的长方体的体积,从而突破本节课的重难点。在这一环节中教师适时强调,测量时要把石头完全浸入水中,才能应用转化的思想求体积。】
6、你还有其他的方法能够测量出这块石头的体积吗?(出示“溢出法”和“排水法”的逆运用)
【设计意图:教师引导学生思考其他测量不规则物体体积的方法,从而让学生明白解决问题的方法的多样性。】
7、其实,早在2000多年前,大物理学家阿基米德就曾经用过刚才同学们说到的方法帮助国王解决了一个难题,出示“数学万花筒”,学生读。
(三)测量苹果醋瓶的体积
1、现在你们想不想亲自测量一下不规则物体的体积?
机会就在眼前,每个小组的桌面上都有一瓶苹果醋。在大家动手之前,请你先猜猜看“这个瓶子的体积是多少?(净含量:260mL)
2、现在就动手来验证一下吧。将记录填写在实验报告单中。
【设计意图:新数学课程标准中强调,教学中“做”比“知道”更重要。数学活动课要把握好实践活动的时机,凡是能让学生自己设计的,就让学生亲自去发挥;凡是能让学生自己去做的,就让学生亲自去动手。】
3、在刚才的实验中,我们又完成了一次转化,谁能来说一说?
(四)总结
通过这几次的实验,我们发现:不管是“排水法”还是“溢出法”,实际上都是在完成一次转化,是将什么转化成什么呢?(将不规则物体转化成规则物体)
【设计意图:使学生明确“转化”思想的实质。】
三、质疑
看书 页,对于今天我们学习的知识,你还有什么不清楚的地方?
四、课堂练习
(一)填空
1、一个量杯水面刻度200mL,放入一个零件后,量杯水面刻度450mL,这个零件的体积是( )。
2、一个长方体容器装满水,底面长8dm,宽5dm,高3dm,放入一个不规则物体后,溢出30升的水,这个不规则物体的体积是( )。
3、一个长方体容器,从里面量长3分米,宽2分米,高5分米,里面装有水,水深3分米,如果把一块小长方体放入水中,小长方体的长是10厘米,宽8厘米,高5厘米,上升的水的体积是( )。
【练习目的:强化“转化”思想的实质。】
(二)解决问题
第一组
1、一个长方体容器,底面长4dm,宽2dm,放入一个石块后水面上升了0.5dm,这个石块的体积是多少立方分米?
2、一个正方体的容器,棱长20厘米,现装有深度为5厘米的水。在放入一个物体后,水面上升到8厘米,放入物体的体积是多少立方厘米?
【练习目的:通过对比练习,由直观到抽象,激发了学生的学习兴趣,提高了教学效率与效益。】
第二组
1、一个长方体容器,长20厘米,宽15厘米,高10厘米。将一块铁块放入容器中,装满水,再将铁块取出,这时容器中的水面高度是6厘米,这块铁块的体积有多大?★★
2、一个正方体容器装满水,当放入一个长方体后,容器中溢出了48升水,已知长方体长8分米,宽2分米,求高是多少厘米。★★★
3、一个棱长为15厘米的正方体容器内水深8厘米,浸入一个不规则的钢块后,水面上升到距容器口3厘米处,这个钢块的体积是多少? ★★★★★
【练习目的:由浅入深,层层深入,采用小组合作的形式,让学生参与到教学全过程,增强学生的主人翁意识。】
五、全课小结
1、通过这节课的学习,你有什么收获?(学生汇报)
2、生活中有许多不规则的物体,我们可以把它们转化成规则的物体来计算出体积。在解决数学问题的时候,往往需要我们用一种变通的方法去思考。
3、拓展练习:那么,你能想办法测出一粒黄豆的体积吗?(学生汇报)
一粒黄豆非常小,把它放入水中,我们很难看出水面的升高情况,也就很难算出它的体积。我们可以先测量出一定数量的黄豆的体积,再除以黄豆的数量,就能得出一粒黄豆的体积了。
板书设计:
转化
有趣的测量:不规则物体的体积 规则物体的体积
V正=a3 芒果的体积 上升的水的体积
V长=abh 石头 下降
瓶子 溢出
教学内容:
长方体的认识
教学目标:
1.初步认识立体图形、认识长方体的特征。
2.通过观察、想象、动手操作等活动进一步发展空间观念。
3.继续培养学生学习数学的兴趣,进一步形成勇于探索、善于合作交流的学习品质。
教学重点:
掌握长方体的特征。
教学难点:
通过观察、想象、动手操作等活动进一步发展空间观念
教具运用:
一些长方体物品,课件。
教学过程:
二次备课
一、复习导入
1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的平面图形)
2.投影出示教材第18页的主题图。提问:这些还是平面图形吗?(不是)教师:这些物体都占有一定的空间,它们都是立体图形。提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体?
3.举例:在日常生活中你还见到过哪些长方体的物体?长方体又具有什么特征呢?引出新课并板书课题。
二、新课讲授
1.认识长方体的面、棱、顶点。
(1)请学生拿出自己准备的长方体学具,摸一摸,说一说。你有什么发现?(长方体有平平的面)
板书:面
(2)再请学生摸一摸长方体相邻两个面相交的地方有什么?讲述:把两个面相交的边叫做棱。
板书:棱
(3)再请同学摸一摸三条棱相交的地方有什么?(一个点)讲述:把三条棱相交的点叫做顶点。
板书:顶点
(4)师生在长方体教具上指出面、棱、顶点。学生依次说出名称。
2.研究长方体的特征。
(1)面的认识。
①请学生拿出长方体学具,按照一定的顺序数一数,长方体一共有几个面?(6个面)有几组相对的面?(3组)前?后,上?下,左?右。
②引导学生观察长方体的6个面各是什么形状的?
板书:6个面都是长方形,特殊情况下有两个相对的面是正方形。教师分别出示这两种情况的教具。
③引导学生进一步验证长方体相对的面的特征。
板书:相对的面完全相同。
④请学生完整叙述长方体面的特征。
(2)棱的认识。教师出示长方体框架教具,引导学生注意观察
一、学情分析:
《质数和合数》这一课内容比较抽象,很难结合生活实例或具体情境来教学,学生理解起来有一定的难度。另外,到本节课为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数,合数和偶数的概念弄混,教学时应注意让学生辨析这些概念。
二、教学目标:
1、理解质数和合数的概念。
2、能熟练判断质数与合数,能够找出100以内的质数。
3、培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。
三、教学重难点:
重点:理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。
难点:能运用一定的方法,从不同的角度判断、感悟质数合数。
四、教学过程:
(一)导入新课。找出1~20各数的因数。
你发现了什么?
(学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……)
今天我们学习的内容就与一个数因数的个数有关。
[设计意图说明:让学生用自己的话描述1~20各数因数的特点,通过观察学生虽然没有质数与合数的概念,但对这些数已经有了自己的分类与认识,为之后的分类与概念的学习打下基础。]
(二)新授
探究一:认识质数和合数
师:请同学们按照因数的个数,将这些数分分类。
(学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)
师:同学们都说得非常好,请打开课本翻到第14页,请你按照它的方法分一分。
师:一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。上面这些数中,哪些数是质数(素数)?为什么?
(学生可能回答:2是质数,它的因数只有1和2;3是质数,它的因数只有1和3;2,3,5,7,11,13,17,19都是质数,它们的因数都只有1和它们本身;……。)
师:1是质数吗?
(学生回答:1是质数,它的因数只有1和它本身;1不是质数,1的因数只有1个,质数有2个因数;……)
师:一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。上面这些数中,哪些数是合数?为什么?
(学生可能回答:4是合数,除了1和4以外,2也是4的因数;6是合数,除了1和6以外,6的因数还有2和3;……)
师:1是合数吗?
(学生可能回答:1不是合数,它只有1个因数1。)
小结:1不是质数,也不是合数。
师:你还能找出其他的质数和合数吗?
(学生举例并说明理由)
[设计意图说明:质数和合数的定义可以教师直接给出,也可以让学生自己看书自学,这里的重点是要让学生理解定义,根据定义判断一个数(除了1)是质数还是合数。学生在一开始可能会将1归为质数,这时要提醒学生仔细理解定义中“两个因数”的含义。在小结和板书中也要强调,1不是质数,也不是合数。]
探究二:找出100以内的质数,做一个质数表。(课本P14例1。)
(媒体出示图表)
师:你有什么好方法?
(学生回答:先把偶数去掉,它们除了1和本身外,一定还有因数2(教师提示2是质数,不能去掉);除了5以外,个位是5,0的数先去掉;……)
师:利用我们之前学习到的知识,可以先将2,3,5的倍数划掉(不包括2,3,5)。一直可以划到几的倍数?
(学生可能回答:50的倍数,51的2倍是102,超过100了。)
(学生制作100以内的质数表。)
[设计意图说明:由于小学用到的质数比较少,所以教材中只要求学生找出100以内的质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是有必要的。]
五、练习
(课本P16∕练习四第一、二题。)
六、小结:
1、一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。
2、一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。
3、1不是质数,也不是合数。
教材分析
《圆柱的表面积》包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。
例2是求圆柱的表面积。先说明圆柱的表面积的意义,在给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分,求表面积。例3是让学生运用求圆柱表面积的方法求出做一个没有盖的圆柱形铁皮水桶的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。
学情分析
本班学生动手能力不是很强,自主探究方法、方式较少。
教学目标
使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。
教学重点和难点
理解和掌握求圆柱表面积的计算方法。
教学过程
(一)创设生活情景,激励自主探索
在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”
(二)创设探究空间,主动发现新知
1、 认识圆柱的表面
师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?
生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。
师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)
生:我知道了,圆筒是用长方形纸卷成的
师:各小组试试看,这位同学说的对吗?
(其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)
师:还有别的可能吗?如三角形、梯形。
生:不能。如果是的话,就不是这种圆柱形的饮料罐了。
(评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)
2、 把实际问题转化为数学问题
师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?
学生观察、思考、议。
生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。
生B:求饮料罐铁皮用料面积就是求:
圆面积_2+ 长方形面积
生C:必须知道圆的半径、长方形的长和宽才能求面积。
生D:我看只要知道圆的半径和高就可以求出用料面积。
师:我们让这位同学谈谈他的想法。
生D:长方形的长与圆的周长相等,长方形的宽与高相等。
所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。
师随着板书:长方形 = 长 × 宽
↓ ↓ ↓
圆柱的侧面积 = 底面周长 × 高
(三)自主总结规律 验证领悟新知
让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 r h
师:如果圆住展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(四)解决生活问题 深化所学新知
师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。
生汇报。
师:通过计算,你有哪些收获?
生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于则面积加上底面积和的两倍。
生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。
板书设计
长方形 = 长 × 宽
↓ ↓ ↓
圆柱的侧面积 = 底面周长 × 高