作为一位优秀的人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。那么什么样的教案才是好的呢?下面是人美心善的小编演员为大家收集的四年级数学下册教案【优秀8篇】,欢迎阅读,希望对大家有所帮助。
教学内容:
人教新课标四年级数学下册减法的运算性质。
教学目标:
1、 理解并掌握减法的运算性质,并利用性质进行有关的简算。
2、 培养学生分析研究及综合概括的能力。
3、引导学生在实践中主动地去获取知识。
教学重难点:
学生通过实践体验概括减法的运算性质。
教学过程:
一 创设情景,引入新课
1、李叔叔看一本书,昨天看到了66页,今天又看了34页,这本书一共有234页,还剩多少页?
学生汇报。
生每回答一个问题,师问:你是怎么想的?
教师板书三种方法。
(1)234-66-34 (2)234-(66+34) (3)234-34-66
师:请你告诉我他们的结果。(只板书最后结果)
结果相等,那就是说我们可以用什么符号来表示?(等于号)板书。
2、请你观察这三种方法,有什么发现?
学生汇报,师总结。
(生如果说不出,可以引导有什么相同点和不同点?)
师:是不是所有的从一个数里面连续减去两个数,都等于从这个数里减去这两个减数的和呢?请大家试着在草稿纸上举例验证。
学生汇报。
师:像这样的式子你能举得完吗?写不完怎么办?
(生:用字母表示)
a-b-c=a-(b+c) a-b-c=a-c-b
引导学生总结出:一个数连续减去两个数,等于一个数减去这两个减数的和。
一个数连续减两个数,可以先减第二个减数,再减第一个减数。
师:这就是我们今天要学习的“减法的运算性质”
生齐读。
3、这三种解法都是正确的,你喜欢哪种呢?为什么?
生汇报,大部分人应该会选择第二种和第三种。
师总结:凑整。(两个减数能凑整)、去尾变整(被减数和一个减数有相同部分)
三、巩固练习
1、请你说说哪个小朋友最会运用今天所学知识使计算变得简单了呢?
① 354-74-26
=354-(74+26)
=354-100
=254
② 154-54-79
=154-(54+79)
=154-133
=21
③ 472-54-72
=472-72-54
=400-54
=346
④ 158-63-58
=158-(63+58)
=158-121
=37
师小结:我们在遇到连减的时候,要根据这几个数值的特点来正确选择运算性质。 2、在 里和横线上填写相应的运算符号和数
868-52 -48
=868- (52+48 )
1500-28-272= 1500-(28 272)
475-26-75=
286-37-42-21=286-( 37+42+21)
684-(584+37)=684-584-37
3、我来当法官
427-73-127 144-56+12
=427-(127+73) =144-(56+12)
=427-200 =144-58
=227 ( ) =88 ( )
427-73-127 144-56+12
=427-(127+73) =144-(56+12)
=427-200 =144-58
=227 ( ) =88 ( )
四、课堂小结:
这节课你有什么收获?
教学目标:
1、通过操作活动,认识平角和周角;
2、能说出生活中的平角与周角。
教学重点:认识平角、周角。
教学难点:能说出生活中的平角与周角。
教学过程:
一、激情导入
在日常生活中,你们见到过旋转与平移吗?请大家说说。
以前我们都学习过哪些角?
二、探究新知
1、用自己的旋转学具按逆时针方向旋转一个锐角、直角、再旋转到一个平角、周角。
2、仔细观察你们发现平角和周角有什么特点?
3、小结:今天我们又认识了两个新角,平角和周角及它们的特点。
三、试一试
1、说说生活中的周角和平角;
2、出示P22的2,图中是围绕哪一点转的?
四、练一练
1、让学生做P22的1;
2、在钉子板上做出锐角、直角、钝角和平角。
五、课后实践
回家观察,除了钟表外,还有别的计量表,它们是否也有和钟表的共同点,它们都是围绕哪点转的。
板书设计:
旋转与角;
锐角直角钝角平角周角;
钟表上时针与分针形成的角。
教学目标
1、结合具体情境,探索积的小数位数与乘数的小数位数的关系;
2、经历探索小数乘法计算方法中,如何确定积的小数位数的过程。
导入新课
师:学校最近准备盖一个礼堂,供我们学校的师生使用,现在同学们看到的这幅图就是电脑为我们学校设计的,同学们看后想说什么?
生:(1)真漂亮!
(2)太好了,我们也能坐在这样的礼堂里上课了。
(此处的目的:是想通过看礼堂情境图,达到激发学生学习兴趣的目的。)
初步感知
师:下面让我们走进礼堂去看一看里边的情况:(课件出示礼堂内部情境)边演示,教师边介绍:这个礼堂准备建长30米,宽20米,在礼堂前面的墙壁上挂一块长3米 、宽2米的屏幕,地面上准备铺长0.3米、宽0.2米的地砖……看到这里你们知道了什么?
生:知道这个礼堂的地面、屏幕、地板砖都是长方形的。
师:你们还想知道什么?
生:(1)礼堂的'占地面积是多少?
(2)屏幕的面积?
(3)地砖的面积?
……
师:请同学们快速计算一下:礼堂的占地面积、屏幕的面积分别是多少?
生:汇报:(学生汇报的同时教师板书)
(1)礼堂的面积为:30×20=600(米2)
(2)屏幕的面积为:3×2=6(米2)
师:怎样计算地板砖的面积呢?
生:0.3乘0.2
师:0.3乘0.2的积是多少呢?该怎样计算呢? 请同学们先独立思考一下,试一试怎样计算0.3乘0.2的积。
(此处的目的是让学生独立思考,让全班每一个学生有动脑思考的时间、空间,为小组合作互相交流做准备。)
师:四人一小组,互相交流一下你们各自的想法和办法,你们小组准备用什么办法解决这个问题。(在小组讨论的基础上,全班反馈)
生:(1)我们小组是把0.3米变成3分米,0.2米变成2分米,
3×2=6(平方分米2)
师:请你们小组说一说为什么把0.3米、0.2米要变成3分米,2分米呢?生:因为0.3、0.2是小数,我们不会计算,变成3和2就可以计算了。
生:我们小组试着用画图的方法去做,做一半不会了。
(学生迁移第一节的画图知识,但遇到了困难)
师:除了这些你们还有别的方法吗?
生:没有了。
(此时的学生遇到了困难,他们用求助的眼光看着老师,急切地想知道解决的办法。)
师:老师从你们的眼神中看出,你们遇到了困难,那老师和大家共同解决好吗?
生:可以。
师:课件演示图形。
师:6个小格表示多少?
生:0.06或6/100
师:说明“0.3×0.2”的积是多少?
生:积是0.06。
师:以上两种方法可以帮助我们解决0.3乘0.2的积,还有其它方法吗?
请同学们观察这两个式子:
礼堂面积: 30×20=600(米2)
屏幕的面积:3×2=6(米2)
看一看长与长之间、宽与宽之间有什么关系?请小组同学讨论交流一下。(在小组交流讨论的基础上,全班反馈)
生:(1)我们小组发现:这两个长方形的长有关系,从30→ 3,小数点向左移动1位,缩小10倍。
(2)我们小组发现宽从20→2,小数点向左移动一位,宽缩小10倍。
师:同学们对这两个式子中的长、宽进行了比较,现在我们比较一下(1)和(2)两式的面积,看一看有什么发现?
教师指板书:30 × 20 = 600
3 × 2 = 6
生:面积从600→6小数点向左移动两位,面积缩小100倍。
师:同学们的发现非常正确,你们能不能用刚才推理的方法,比较一下(3)式和(2)式,看一看它们的面积之间会有什么关系?
生:从(2)→(3)长、宽分别缩小10倍,面积就应该缩小100倍,所以0.3×0.2=0.06
师:从刚才的比较中你们发现了什么?
生:发现了乘数变化积也变化。
师:小结:
刚才我们用三种不同的方法分别计算了“0.3乘0.2”的积都是0.06。
巩固练习
师:你们能不能用我们刚才发现的规律,做一做P45的试一试,做完之后同座两人互相交流一下,你们发现了什么?(全班反馈交流)
师:重点追问:“0.4×0.3”的积是多少?怎样得到的?
生:与(1)式比较,4和3分数缩小10倍,所以,积“12”也应缩小100倍,是原来的1/100,所以等于0.12。
师:“0.13乘0.2”的积是多少?
生:与(1)式比较从13到0.13缩小到原来的1/100,到0.2缩小到原来的1/10,所以积应缩小到原来的1/1000,积是0.026。
师:继续完成P45填一填,完成之后独立思考一下,你又发现了什么?然后小组内互相交流一下你们的发现。(全班反馈交流)
师:说一说填的结果。
生:报结果。
师:说一说你们发现了什么?
生:我们发现积的小数位数与两个乘数的小数位数的和一样。
师:能举一个例子说明一下吗?
生:如“0.13×0.2”第一个乘数中是两位小数,第二个乘数是一位小数,积就是三位小数。
师:你们与他们的发现相同的吗?
生:相同
归纳小结
以后我们计算小数乘法时,就可以把小数看成整数去乘,然后在看两个乘数一共有几位小数,在积中从右向左数出几位点上小数点就可了。
如“0.3乘0.2”可以用竖式计算。(教师板书乘法竖式)
教学目标:
1、知识目标:引导学生初步理解小数的性质;能运用小数的性质正确地化简小数和改写小数。
2、能力目标:激发学生积极主动的探究精神,培养学生归纳、分析的能力。
3、情感目标:培养学生爱学数学的情感。
教学重点:
理解小数的末尾添上“0”或去掉“0”,小数的大小不变的道理。并正确运用这一性质解决相关问题。
教学难点
掌握在小数部分什么位置添“0”去“0”,小数大小不变。
教具准备:
学习纸“小魔术”纸卡多媒体课件
课时:1课时
教学过程:
一、情景导入(小魔术)
1、师:同学们,第一次给你们上课,作为礼节,我给大家表演个魔术——数字的变化。看这是数字1?等会你们一起小声喊:1,2,3,大,老师就可以把这个数变大了。信不信?
生:1,2,3,大。
师:把1变成10,10和1比扩大了10倍,……
2、老师还有一个数0.1,我们再来试一试。
引起学生的冲突:到底变大了吗?
(设汁意图:是把枯燥的数学知识贯穿在小学生喜闻乐道的游戏中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。)
这节课,我们就来研究小数末尾“0”对小数的大小的影响。也就是我们今天要学习内容——小数的性质。
二、探求新知
1、师:0.1米、0.10米、0.100米,他们到底会不会相等呢?
师:请拿出你的学习纸把第一题完成。
汇报:请学生上台展示。填空、比较发现一样,从而得出0.1米=0.10米=0.100米。
教学中让学生说说你是怎样找出0.1米、0.10米、0.100米。
(0.1米是一位小数,它的计数单位是1/10,有1个1/10,也就是说0.1米=1/10米,把1米平均分成10分,1份就是1分米。所以0.1米=1分米。
0.10米是两位小数,它的计数单位是1/100,有10个1/100,也就是说0.10米=10/100米,把1米平均分成100分,1份就是1厘米,10份是10厘米。所以0.10米=10厘米。
0.100米是三位小数,它的计数单位是1/1000,有100个1/1000,也就是说0.100米=100/1000米,把1米平均分成1000分,1份是1毫米,100份就是100毫米。所以0.100米=100毫米。)
因为1分米=10厘米=100毫米所以0.1米=0.10米=0.100米
师:0.1米=0.10米=0.100米(板书)这三个长度是一样的,都是以“米”为单位,我们就可以把数抽象出来0.1=0.10=0.100。
(设计意图:这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识)。
仔细观察这组小数,你有什么发现?
生:小数的末尾添上“0”,小数的大小不变。
师:同学们的眼光真锐利。小数的末尾添上“0”,小数的大小不变。我现在有个疑问,其它的小数也有这样的特点吗?
师:现在请同学们翻开学习纸,根据方格图,自己想一组小数把它表示出来。
学生操作,交流汇报。
课件展示。
(教师在学习研究中要加强指导)
2、师:现在请同学们观察上面的题目中的小数,你能说出几组和它们类似的小数吗?
学生说说。
师:能说出这么多组,你们一定发现了什么规律吧?(交流,汇报)
总结:小数的末尾添上“0”或去掉“0”,小数的大小不变。
(设计意图:这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。)
3、联系生活,再现新知:还有同学们在商场看到货物的标价如:这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
(二)小数性质的应用
1、教学例2
师:现在我们认识了小数的性质,那么应用小数的性质,我们可以根据需要对小数进行改写。
电脑演示:化简下面的小数。0.70= 105.0900=
教学0.70=0.7
问:①你是怎样化简的?(根据小数的性质,去掉小数末尾的“0”就可以把小数化简)
②0.70与0.7它们的大小不变,但意义相同吗?
(不同,0.70表示70个1/100,0.7表示7个1/10)
教学105.0900=105.09
问:小数里的其他“0”可以去掉吗?为什么?(不可以,大小改变。师要强调末尾)
2、教学例3
电脑演示:不改变数的大小,把下面各数写成三位小数。
0.2 = 4.08 = 3 =
师:你是如何把它改写成三位小数的?(根据小数的性质,在小数的末尾添上“0”小数的大小不变)
师:3如何改写成三位小数?这个小数点不点的话可以吗?
注意:A、在小数的末尾添“0”。
B、当这个数是整数时,在整数个位的右下角点上小数点,再添“0”。
师:应用小数性质时,应注意什么?(小数、末尾)
三、巩固练习
课本59页的做一做。2、开火车的形式回答59页的做一做。
问:你是怎样化简和改写这些数的?
四、全课小节
1、这节课你学到了什么?
小数的末尾添上“0”或去掉“0”,小数的大小不变。
2、我们是怎样探索小数的性质的?
在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。
板书:小数的性质
小数末尾“0”对小数的大小的影响
小数的末尾添上“0”或去掉“0”,小数的大小不变。
0.1米=0.10米=0.100米
0.1=0.10=0.100
教学目标:
1.掌握小数的性质,会应用小数的性质化简改写小数。
2.培养学生合作能力和口语表达能力。
3.体验学习数学的乐趣。
教学重难点:
引导学生积极探索,发现并理解小数的性质。
教学过程:
一。激趣引入:
出示1 10 100
师:这几个数熟悉吗?(熟悉),今天就让我们用100分的热情,10分的认真,上1节快乐的数学课。你们能做到吗?(能)。上课
1.提出问题:
首先,李老师想请你们来当小裁判,有两位同学发生了这样一件事:(看大屏幕)
小方:我买了一个本子,用了0.30元
小雨:我买了这样一个本子,只花了0.3元,比你便宜
小方:不对,我们俩花的钱同样多
2.引发猜想:
师:你们来当当裁判,他们谁说的对?
生:小方说的对。
师:0.3=0.30(板书在黑板上)
二。自主互助
引导学生验证探索理解小数的性质
我们学数学要有理有据,那么,你们的'猜想0.3=0.30,对不对,还需要你们进行验证。
1.小组合作验证猜想:(明确要求)
A.选择一种你认为最拿手的方法验证。
B.要求分工明确
2.小组汇报:
a涂格子的的方法验证。
师:你们的方法真好,利用图形来验证,形象直观。
b用长度单位来验证。
0.3米=(3/10)米=(3)分米
0.30米=(30/100)米=(30)厘米=(3)分米
师:你们的结论是0.3米=0.30米。单位相同都是米。
所以0.3=0.30.
你们用常用的长度单位来验证再一次证明了0.3=0.30,还有其他的方法吗?
c用人民币的单位验证。
0.3元=(3)角
0.30元=(30)分=(3)角
师:你们用熟悉的钱数来验证,简洁好想,真不错。
d.拓展发现:(还能写出这样的一组数)
0.300米=(300)毫米=(30)厘米
结果:0.3=0.30=0.300
生:在小数的末尾添上“0”或去掉“0”,小数的大小不变。
生:板书。师补充课题《小数的性质》
师:这句话中,你认为哪个词是关键词,“末尾”。为什么?
3.合作结论:小数的末尾添上“0”或去掉“0”,小数的大小不变。(再读一遍)
三。快乐闯关
第一关:下面各数末尾添上“0”后,发生了哪些变化?同桌之间互相说一说。说说你发现了什么?
18 0.06 3.0 120 700 10.01
第二关:下面的数如果末尾添上“0”,哪些数的大小不变?哪些数的大小会变?
3.4 150 9.08 104.03
31.00 42.1 52.01 35
第三关:判断
1、12.8和12.80的大小一样,但计数单位不一样。()。
2、在小数上添“0”或去掉“0”,小数的大小不变。()
3、908的未尾添上两个“0”,数的大小不变。()
第四关:化简下面各数
0.40 1.8500 2.900
0.080 12.000 0.020
第五关:不改变数的大小,把下面各数写成三位小数。
0.9 30.04 5.4 8.18 14
四。 总结:
1.说说你的收获。
2.评价一下自己和你的伙伴。
五。板书设计:
小数的性质
小数末尾添上“0”或者去掉“0”,小数的大小不变。
教材分析:
学生在四年级之前已经认识了长方体、正方体、圆柱、长方形、正方形、三角形、圆等图形,这些知识在学生头脑里是零散的。本节课是在学生已有知识的基础上引导学生对这些学过的图形进行整理归纳,把这些图形练习在一起,建构初步的图形知识体系,培养学生比较、分类、归纳、概括的能力。同时通过学生动手操作,发现三角形的稳定性与四边形的不稳定性,并利用生活实例,让学生认识到三角形稳定性和四边形不稳定性在生活中的应用。
教学目标:
知识目标:通过具体的分类活动,整理图形,认识不同类别图形的特征。通过实际操作,体会到四边形的不稳定性及三角形稳定性,认识这些特性在日常生活中的应用。
情感目标:在图形的认识的活动中,重视培养学生应用数学知识解决问题的能力。在实践活动中,体验探索的过程,提高自主探索、合作交流的能力。
技能目标:能根据图形的特征,将图形按一定的标准分类。
教学重点:
能够按照一定的标准对图形进行分类。
教学难点:
体会四边形的不稳定性和三角形的稳定性。
教学准备:
由硬纸片做成的各种平面图形,长方体、正方体、圆柱、球等立体模型。
教学过程:
一、复习提问,引入新课。
展示课件,提问:我们以前已经学过哪些图形?
教师根据学生回答画出或找出相应的`图形模型。
想一想:你能不能根据各图形的特征进行分类呢?教师板书课题:图形分类
(一)分一分:让学生独立尝试分类,采用标号的方式进行。(也可以画出图形来分类)。并与同桌交流分类的方法。
汇报与交流:分小组汇报分几类及分的理由。
立体图形和平面图形
(1)立体图形;
(2)平面图形的长方形、正方形、三角形和平行四边形(线段围成的)。
师:刚才我们分出的平面图形还能再分类吗?试一试。
1.平面图形(根据是否线段围成)
长方形、正方形、三角形、平行四边形、
(五边形…) 圆形
2.平面图形(根据角的数量或根据边的数量)
长方形、正方形、三角形、平行四边形 三角形
3.平面图形(根据是否有直角组成)
长方形、正方形。 三角形、平行四边形。
师生共同小结分类的方法。
二、实践活动:(探究四边形和三角形的特征)
1.学生拿出准备好的活动四边形和三角形。
师:拉一拉,你发现了什么?同桌交流。
2.汇报与板书。
小结:平行四边形易变形,不具有稳定性。三角形具有稳定性。
3.展示课件。观赏这些图形的性质在生活中的应用。
三、巩固与应用。
断一断
1.梯形和平行四边形都是四边形。( )
2.三角形和平行四边形都具有稳定性。( )
3.由四条边构成的图形是四边形。( )
画一画
1.请你用一根线段把一个正方形分成两个相同的三角形。
2.请你将下面图形分成一个三角形和平行四边形
四、课堂小结
这节课我们学习了哪些内容?
可抽生回答。或采用集体回答的方式。
五、作业
1.用你自己的方式,画出图形分类表。
2.完成校园作业本13页。
板书设计:
图形分类
立体图形
图形: 曲线围成的图形
平面图形
线段围成的图形
我们发现:四边形具有不稳定性,三角形具有稳定性
教学内容:
教科书第58-59页例1—例3,及“做一做”。
教学目标:
1、初步理解小数的基本性质,会运用小数的基本性质进行小数的化简和改写。
2、运用猜测、检验、观察、对比等方法,探索并发现小数的性质。
3、培养学生动手操作的能力。
教学重点、难点:
1、教学重点:让学生理解和掌握小数的性质。
2、教学难点:让学生抽象概括小数的性质。
教学过程:
一、 创设问题情境,鼓励大胆猜测。
1、通过商品标价2.50元和3.00元这两个小数尾末有零来引起思考,自然地引出两个问题:0.1米、0.10米、0.100米,它们大小相等吗?0.30和0.3呢?
2、猜一猜。
二、 利用工具,检验猜测。
师:老师给每个学习小组准备了一些工具(一把米尺,一张数位顺序表,两张方格纸),请你们利用这些工具来检验刚才的猜测是对还是不对。先请你们四人一组,选一选、议一议:你们选择哪种工具,准备怎样来验证?
学生动手操作、检验:
⑴ 学生利用直尺验证:0.1米是1分米,0.10米是10厘米,0.100米是100毫米,他们在尺子上所表示的长度都是相等的,所以0.1米=0.10米=0.100米。
⑵ 学生利用数位顺序表验证:把0.30和0.3写在数位顺序表中,从数位顺序表中看出,它们的位数虽然不同,“3”所处的位置相同,所以0.30=0.3。
⑶ 学生利用正方形图验证:0.30是百分之三十,0.3是十分之三。从平均分成100份的正方形图中取其中的30份,就表示0.30。从平均分成10份的正方形图中其中3份,就表示0.3。从图中很明显的看出0.30=0.3。启发学生想一想:十个百分之一是一个十分之一,三十个百分之一是三个十分之一,所以0.30=0.3。
三、 观察比较,探究规律。
从刚才的操作中,我们已经知道:0.1米=0.10米=0.100米,0.30=0.3。下面请大家观察这两个等式,什么不变,什么变了?为什么数变了后数的大小不变?
四、 概括总结,揭示性质。
⑴ 谁能用一句话归纳出这个规律?这个规律就叫做“小数的性质”。
⑵ 请大家一起读“小数的性质”
五、 学生质疑。
六、 运用性质,化简改写。
⑴ 学了小数的基本性质有什么用呢?请大家自学课本例3。想一想:什么叫化简?什么叫改写?它们的根据分别是小数性质中的哪一句?并举例说明。
⑵ 教学例4
出示例4:不改变数的大小,把0.2、4.08、3改成小数部分是三位的小数。
①问:0.2和4.08各是几位小数,要把它们改成三位小数应在小数的哪部分添上“0”?各应添上几个“0”?为什么?
②问:整数3改写三位小数,在3的后面添上三个“0”写作3000,对吗?为什么?那么应该怎样写?
③学生汇报结果,师板书:0.2=0.200,4.08=4.080,3=3.000。
七、 巩固提高,升华知识。
⑴ 完成课本“做一做”的题目。
⑵摆数游戏:每个小组利用老师发给的五张数字卡片,按要求摆数:
①用五张卡片摆一个数,这个数中的两个“0”都能去掉。
②用五张卡片摆一个数,这个数中的两个“0”一个能去掉,一个不能去掉。
想一想:怎样摆才能既不重复又不遗漏。
八、 交流收获,反思评价。
通过这节课的学习,你有什么收获?学会了哪些解决问题的方法?这些方法对今后的学习有什么帮助?
九、 布置作业:
练习二十一的第1—6题。
十、 板书设计:
小数的性质
例1:比较0.1米、0.10米、0.100米的大小
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
例2:0.70=0.7 105.0900=105.09
例3:0.2=0.200 4.08=4.080 3=3.000
教材分析
本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第一课时,是探讨关于一条线段并且两端都要栽的情况。
这是学生第一次接触“植树问题”,是后继学习的准备,需要正确建立数学模型。
教学目标
1、发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。
2、能利用数学模型解决简单的实际问题。
3、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。
4、体会数学模型的生活意义与作用,体验到学习的喜悦。
学习重点:采取什么策略正确解决“一条线段并且两端都种”的植树问题。
学习难点:发现“植树棵数”与“间隔数”的。规律,建立“树的棵数=总长÷间距+1”的数学模型。
预设过程
一、尝试解题发现问题
1、揭题:今天我们来研究植树方面的问题。(板)
2、课件呈现学习材料,请学生尝试。
3、反馈,形成争议:
1)100÷5=20
2)100÷5+1=21
4、提出研究问题:植树棵数正好等于间隔数,还是间隔数加1呢?(板)我们来研究。
二、研究规律
1、议:在晒场的一侧(8米)种小树,两端都种,可以怎么种?
2、生述师画,发现棵数比间隔数多1。
3、自己尝试画图,完成表格。
4、议:你发现什么?
5、:当在路的一侧种树时,如果两端都种,棵数=间隔数+1,也就是等于总长÷间距+1。(板)
6、分析尝试题的正确解法
三、练习
1、变式练习
2、扩展练习
1、完成1-1。
1)议:已知什么,求什么?(师在模型的相应地方画√)
2)尝试完成,并反馈。
2、完成1-2。
1)议:已知什么,求什么?(师在模型的相应地方画√)
2)议:怎么求总长?(板)
3)尝试完成,并反馈。
3、完成2。
1)议:已知什么,求什么?(师在模型的相应地方画√)
2)议:从间隔10米,能停41辆,能求出什么?求出总长后,怎么安排这51辆车?
3)尝试完成,并反馈。
四、