在教学工作者实际的教学活动中,可能需要进行教案编写工作,教案是教学活动的总的组织纲领和行 动方案。教案要怎么写呢?下面是小编辛苦为大家带来的小学六年级数学上册教案【优秀8篇】,在大家参照的同时,也可以分享一下给您最好的朋友。
一、指导思想:
学期即将结束,按教学计划开展教学活动已进入复习阶段,期末复习,如果不讲究科学的态度和方法,那么对学生来说,就一定感到很乏味。所以调动学生的复习积极性很重要。为了更好的提高复习效率,,突出尖子生,重视学困生,提高中等生,有的放矢的做好复习,特制定本复习计划。
二、复习内容:
人教版小学数学第十一册。
三、复习目标:
1、使学生进一步理解分数乘、除法的意义,掌握分数乘、除法的计算法则。比较熟练地计算分数乘、除法,会口算简单的分数乘、除法。进一步理解认识倒数,理解比的意义和性质,比较熟练地求比值和化简比。
2、使学生比较熟练地进行分数四则混合运算,提高计算速度。会应用学过的运算定律进行简便运算。
3、使学生能够解答比较容易的分数、百分数应用题,提高综合运用所学知识解决比较简单的实际问题能力,能够根据应用题的具体情况,灵活地选用算术解法和方程解法,提高解题能力。
4、使学生进一步牢固理解并掌握圆周长和圆面积的计算公式,能够正确计算圆的。周长和面积,能应用圆的周长和面积公式解决常见的实际问题;进一步理解轴对称的意义,会画对称轴。
四、复习措施:
1、全面系统地对整册教材的知识体系进行梳理,查漏补缺。
2、坚持以人为本的教学理念,确保学生的主体地位,通过组织讨论、合作学习等多形式的组织复习活动,让学生参与复习的全过程,巩固已学过的学习方法,不断提高自学能力,培养探索精神。
3、加强知识的纵横联系,以学生为主体,引导学生主动地进行复习和整理,重视在学生理解基本概念、法则、性质的基础上注意加强知识间的联系,使学生获得的概念、法则、性质系统化。对于易混淆的内容要加强比较,(如求比值与化简比)使学生明确它们之间的联系和区别。
4、强化应用题的基本训练,常见数量关系的积累和运用,使学生牢固掌握应用题的解题步骤和基本方法,不断提高学生的分析能力与解题能力。
5、强化能力培养。在复习数学基础知识的同时,注意学生各种能力的培养。如,复习四则运算,在学生理解运算法则的基础上,经常性地进行训练,不断提高计算的正确率,培养学生合理、灵活运用计算方法的能力。又如,复习圆的周长和面积时,通过各种直观手段发展学生的空间观念,培养测量和画图的技能。
6、加强反馈,注意因村施教。复习时要注意抓重点,有针对性,加强反馈,及时根据学生的学习情况调节教学过程,使各种程度的学生得到有效发展。
7、适当补充设计练习题,强化训练,进一步发展他们思维的灵活性,提高综合应用知识解决实际问题的能力。
8、做好复习转差工作,尤其要对学习困难的学生进行重点辅导。并成立互帮小组。结对子,一帮一。在教师和学生的共同帮助下,使后进学生争取在期末达到合格。
9、以说代做,以听代练,以练代讲,有重点、有系统的进行有效复习检查。
10、重视测试。通过单元测试和综合测试卷,让学生对本册教材的学习内容达到融会贯通。测试评卷时,注重激发学生竞争意识,调动学生的学习积极性。
五、复习进度安排:
1、第15-16周:将知识点理顺,学生重温整册内容,并同步进行单元测试,了解平时错误或遗忘的内容。
2、第17周:
(1)计算的专项复习,尤其是简便计算和解方程。
(2)分数(百分数)应用题的专项复习,将平时的错题展示,让学生在课堂上自己分析错误点,促使学生掌握正确的解题思路。计算的专项复习,尤其是简便计算和解方程。
(3)圆的专项复习,由于圆——这一知识掌握得比较好,所以主要是让学生注意在运用公式计算时的一些特殊性。
(4)统计、数学广角复习。
3、第18周:整册教材的模拟测试。
4、第19周:针对复习中出现的问题进行查缺补漏。
教学说明:
乘法运算定律的归纳、总结和运用对学生来说是一种能力的提高,它区别于一般计算的学习,需要学生有更强的观察能力和思维能力与之相配合,所以学习的困难会更大,特别是合理运用乘法运算定律使一些计算简便这部分内容。本课是要完成的是乘法分配律的学习与研究,下面就教学安排作简单说明。
一、 观察与思考:通过对例题和生活实例的观察、研究和学习,初步感知乘法分配律,同时培养学生的观察能力和观察习惯,在生活中寻找和学习数学知识。
二、 讨论与归纳:这是比观察与思考更高层次的要求。在观察与思考的基础上,通过学生之间的合作,通过相互讨论、研究、补充、完善,归纳出乘法分配律,从而使学生体验合作的重要性与必要性,体验成功的喜悦,懂得合作,学会合作。
三、 练习与提高:通过两部分内容的练习,进一步熟悉、理解、认识和掌握乘法分配律。
四、 简便运算:完成例2的学习,这一部分内容的思考性比较强,特别是对乘法运算定律的灵活运用学生的困难较大,所以在教学时要区别对待。基本内容部分要求全体学生掌握,也就是这一教学段的前三部分内容,这一教学段的最后一部分内容是为学有余力的学生准备的,让不同的学生有不同的收获,但同时获得成功的体验。
教学内容:乘法分配律 P28-29 例1、例2
教学目标:
1、知道乘法分配律的字母表达式。
2、懂得可以用乘法分配律把一个数与两个数的和相乘改写成两个积的和。
3、会用乘法分配律使一些计算简便。
教学重点:理解掌握乘法分配律。
教学难点:乘法分配律的得出及其运用。
教学安排:
一、 观察与思考:
1、 出示例1:(1)看下图计算,有多少个小正方体?
A、用实物演示引出两种算法。
(5+3)2=16(个) 52+32=16(个)
B、观察以上两式得到:(5+3)2=52+32
2、 出示生活实例:
①一件上衣30元,一条裤子20元。买4套这样的服装一共需要多少元钱?
引导学生用两种方法解答,然后通过计算观察得出:
(30+20)4=200(元) 304+204=200(元)
即:(30+20)4=304+204
②2角硬币和5角硬币各6枚,一共有多少钱?
请学生同桌说说两种计算方法,然后汇报结果。
(2+5)6=42(角) 26+56=42(角)
即:(2+5)6=26+56
3、 请学生仔细观察上面讨论得到的三组等式之间有什么相同的特点?
(前后两式是相等的、先算和再算积与先算积再算和是一样的)
这就是今天我们重点要研究的乘法分配律。板书课题:乘法分配率
二、 讨论与归纳:
1、 出示问题,读读想想。
A、 以上三组算式分别先算什么?再算什么?
B、 它们之间有什么联系?
先小组讨论,再派代表汇报交流。
得出乘法分配律的正确说法。
看书,齐读乘法分配律。
2、 质疑。
为什么乘法分配律说:两个数的和与一个数相乘而不是两个数的和去乘以一个数。?
(两个数的和与一个数相乘,这个数可写在两数之和的前面,也可写在两数之和的后面,而两个数的和乘以一个数,这个数只能写在两数之和的后面。)
3、 用字母表示乘法分配律。
(A+B)C=AC+BC
三、 练习:
1、 根据乘法分配律填上适当的数或运算符号。
(8+6)3=8○3○6○3
(25+9)40= 40+ 40
(56+ )3=56 +8
2、 判断:
13(4+8)=134+8 ( )
13(4+8)=138+48 ( )
13(4+8)=134+138 ( )
四、 简便运算:
1、 出示例2:(125+70)8
请同桌两人右边的按运算顺序算,左边的用乘法分配律先去掉括号再算。
算好后同桌观察讨论:怎样算比较好?为什么?
教师总结:用乘法分配律能使一些计算简便。
2、 选择题:
1624+8424的简便算法是( )。
A、(16+24)84 B、(16+84)24 C、(1684)24
3、 用简便方法计算下列各题(先同桌讨论,再独立完成)。(有的不会做的学生可以不做)
(25+9)8 29175+2529 48128-2848 7599+75
4、在方框里填上适当的数,使算式能用简便方法计算,你有几种不同的填法。(不会做的学生可以不做)
41□+5923 □□+6328
五、 小结:
1、 乘法分配律及字母表达式。
2、 运用乘法分配律应注意什么?
①运算符号 ②分配合理
一、教材简析:
这一册教材包括下面一些内容:位置,分数乘法,分数除法,圆,百分数,统计,数学广角和数学实践活动等。
分数乘法和除法,圆,百分数等是本册教材的重点教学内容。
本册教材根据学生所学习的数学知识和生活经验,安排了两个数学综合应用的实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学应用意识和实践能力。决问题中的作用,发展统计观念。
二、教学目标
本册教材的教学目标是,使学生:
1、 理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。
2、 理解倒数的意义,掌握求倒数的方法。
3、 理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。
4、 掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的周长和面积。
5、 知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。
6、 能在方格纸上用数对表示位置,初步体会坐标的思想。
7、 理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。
8、 认识扇形统计图,能根据需要选择合适的统计图表示数据。
9、 经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
10、 体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。
11、 体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
12、 养成认真作业、书写整洁的良好习惯。
三、教学重点:分数乘法和除法、圆、百分数。
四、教学难点:分数乘法和除法、鸡兔同笼问题。
五、班级情况分析:
1、基本情况:本班共计23人,其中男生12人,女生11人。
2、学生学习习惯:绝大多数学生养成了良好的思想品德和学习习惯。在课堂上能积极主动地参与学习过程, 实行分工合作,各尽其责。 能充分动口、动手、动脑,主动收集、交流、加工和处理学习信息。勇于发表自己的意见,听取和尊重别人的意见,独立思考,掌握学法,大胆实践,并能自评、自检和自改。
3、学困生情况:个别学生基础知识差。对数学不感兴趣,学习被动,上课不认真听讲,作业不能按时完成,学习有困难,特别对应用题数量关系的分析存在问题。还有个别学生比较聪明,但学习不勤奋,成绩不高。
六、教学改革措施:
1、转变教学方法。在数学教学中,教师必须将“重视结论”的教学转变为“重视过程”的教学,注重再现知识产生、形成的过程,引导学生去探索、去发现。
2、在课堂上开展小组合作学习,让学生在一起摆摆、拼拼、说说,让学生畅所欲言,互相交流,减少学生的心理压力,充分发挥学生的主题性,培养学生的创新意识和实践能力。
3、增强数学实践活动,让学生认识数学知识与实际生活的关系,使学生感到生活中时时处处有数学,用数学的实际意义来诱发和培养学生热爱数学的情感。
七、后进生转化措施:
1、培养后进生的自信心。只有树立起后进生的自信心,我们的转化工作才找到了起点。要用科学的方法教育后进生。
2、对后进生多宽容,少责备。要做到“三心”:诚心、爱心、耐心。
3、重视与家庭的联系。
八、教学进度:
一单元:位 置。.。.。.。.。.。2课时
二单元:分数乘法
1、分数乘法。.。.。.。.。.。.。.6课时
2、解决问题。.。.。.。.。.。.。.4课时
3、倒数的认识。.。.。.。.。.。1课时
4、整理和复习。.。.。.。.。.。1课时
三单元:分数除法
1、分数除法。.。.。.。.。.。.。.5课时
2、解决问题。.。.。.。.。.。.。.3课时
3、比和比的应用。.。.。.。4课时
4、整理和复习。.。.。.。.。.1课时
四单元:圆
1、认识圆。.。.。.。.。.。2课时
2、圆的周长。.。.。.。.3课时
3、圆的面积。.。.。.。.3课时
4、整理和复习。.。.。1课时
五单元:百分数
1、百分数的意义和写法。.。.。.。.。1课时
2、百分数和分数小数的互化。.。.。.。.。3课时
3、用百分数解决问题。.。.。.。.。.。.。.。9课时
4、整理和复习。.。.。.。.。.1课时
六单元:统 计
1、扇形统计图。.。.。.。.1课时
2、合理存款。.。.。.。.。.。1课时
七单元:数学广角。.。.。.。.。.。.。.1课时
八单元:总 复 习 。.。.。.。.。.。.。.4课时
教学目的:
1、通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2、对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。
教学重点:
掌握利息的计算方法。
教学难点:
正确地计算利息,解决利息计算的实际问题。
教学过程:
一、 导入
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
二、新课
1、 介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2、 阅读P99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。(例如:小丽20xx年月1月1日把100元钱存入银行,整存整取一年,到20xx年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的确1.8元,共101.8元。)
本金:存入银行的钱叫做本金。小丽存入的100元就是本金。
利息:取款时银行多支付的钱叫做利息。
税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的1.8元是税后利息。国债的利息不纳税。
利率:利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读P99页表格,了解同一时期各银行的利率是一定的。
3、学会填写存款凭条。
把存款凭条画在黑板上,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额,、存种、密码、地址等,最后填上日期。
4、利息的计算。
(1)出示利息的计算公式: 利息=本金利率时间
(2)计算方法
按照以上的利率,如果小丽的100元钱存整取三年,到期的利息是多少?学生计算后交流,教师板书:1002.70%3=8.10(元)
(3)三年后取款,小丽能得到8.10元利息吗?为什么?
学生发表意见后,教师指出:1999国家规定存款时,要按利息的确20%缴纳利息税,你能再算一算如果你存入100元,3年后实际能得多少利息吗?
(4)学生计算后回答,教师板书
利息税金:8.1020%=1.62元 税后利息:8.10-1.62=6.48元
加上她存入本金100元,到期时她可以实际得到本金和税后利息一共是106.48元。
5、练习。
(1)完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。
(2)完成练习二十三的第9题。
教学总结:
折扣、纳税、利息是百分数在生活中的具体应用,与人们的生活密切相关。其中,折扣是学生们日常生活最熟悉的,教学中,我没有剥夺孩子们想说的权利,让他们自由地来说说他们对折扣的理解,并引入商品打折销售的情境,解决与之相关的实际问题。但教学中我没有说清楚几折就是十分之几,因此个别孩子对于七五折这样的概念还不是很清楚。而纳税和利率,则主要是通过公式的掌握教给孩子解题的方法。
教学目的:
1.让学生知道什么是圆的周长.
2.理解圆周率的意义.
3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.
教学重点:
推导圆的周长计算公式.
教学难点:
理解圆周率的意义.
教具学具:
1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.
2.电脑软件及演示教具.
教学过程:
一、复习:
上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?
二、导入:
这节课我们继续研究圆的周长(板书课题).
1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?
2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?
问:什么是圆的周长?
板书:围成圆的曲线的长是圆的周长.
3.你能测量出这个圆的周长吗?(能)
4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?
5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?
回答:不能.
想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.
三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?
四、学生动手测量、教师巡视指导.
五、统计测量结果.
观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?
六、电脑演示
(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.
七、看书后回答问题:
1.是谁把圆周率的值精确计算到6位小数?
2.什么叫圆周率?
3.知道了圆周率,还需知道什么条件就可以计算圆的周长?
4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?
现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)
八、出示例1:
一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?
(得数保留两位小数)
请同学们想一想:车轮滚动一周的距离实际指的是什么?
解:d=1.95 单位:米
c=πd
=3.14×1.95
=6.123
≈6.12(米)
答:车轮滚动一周约前进6.12米.
九、课堂练习:
1.投影:计算下面图形的周长.
2.判断下面各题(正确的出示“√”,错误的出示“×”)
(1)圆周率就是圆的周长除以它的直径所得的商. ( )
(2)圆的直径越大,圆周率越大. ( )
(3)圆的半径是3厘米,周长是9.42厘米. ( )
3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)
如果速度相同,两人同时出发,谁先回到出发地点?为什么?
小明的路线长:20×3.14+20×3.14
=62.8+62.8
=125.6(米)
爷爷的路线长:3.14×(20+20)
=3.14×40
=125.6(米)
两条路线一样长,两人应同时回到出发点.
4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.
结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.
小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识.
教学内容:
苏教版义务教育教科书《数学》六年级上册第46页例4、练一练,第48页练习七第9~14题。
教学目标:
使学生经历探索分数除以分数的计算方法的过程,理解并掌握分数除以分数的计算方法,能正确计算分
数除以分数的试题:
使学生在探索分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
教学重点:
分数除以分数的计算方法。
教学准备:
多媒体课件。
教学过程:
一、复习引新
1.口算。
23÷214÷4512÷10310÷6
9÷3104÷452÷3141÷32
2.揭示课题:分数除以分数
二、教学例4
1.出示例4,学生读题,列式。
提问:这是已知什么,要求什么?用什么方法计算?
追问:为什么用除法计算?怎样列式?
2.引导探索:分数除以整数怎么算呢?
(1)请大家画图探索一下这个算式得多少?
各自在书上的。长方形里分一分,画一画。
(2)指名到黑板上画一画,使大家清楚地看出是3瓶。
(3)讨论:分数除以整数,能不能用被除数乘除数的倒数来计算呢?
请大家计算一下它的积,看得数与我们画图的结果是不是一样?(一样)
得数相同,你能猜想到什么?
3.练习,验证猜想
完成练一练第1题:先再长方形中涂色表示,看看里有几个,有几个,再计算。
你发现了什么?
4.概括方法
联系前面学习的分数除以整数和整数除以分数的计算,你能说出分数除以分数的计算方法吗?
根据学生的讨论,板书:
三、练习
1.做“练一练”第1题。
各自练习,并指名板演,练习后评议交流。
2.完成练习七第10题。
独立计算后,引导比较,启发思考:什么情况下,除得商比被除数小?什么情况下,除得的商比被除数大?
3.讨论练习七第11题。
引导:你能不计算,运用已经发现的规律直接填空吗?
4.讨论练习七第12题:
指出:交换被除数和除数,所得的商与原来的商互为倒数。
四、作业:
练习七第9、13、14题。
教学目标
(一)知识教学点
1、理解圆柱体体积公式的推导过程,掌握计算公式。
2、会运用公式计算圆柱的体积。
(二)能力训练点
1、能运用圆柱体的体积公式解决一些实际问题。
2、通过圆柱体体积公式的推导,培养学生的分析推理能力。
(三)德育渗透点
通过把圆柱体切割后,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。
教学重点
圆柱体体积的计算。
教学难点
理解圆柱体体积公式的推导过程。
教具学具准备
1、推导圆柱体体积的圆柱体教具一套,学生学具每人一套。
2、投影片、电脑软件。
教学步骤
一、铺垫孕伏
1、提问:
(1)什么叫体积?怎样求长方体的体积?
(2)圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?
2、导入:
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的知识长方形来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的体积)
二、探究新知
1、教学圆柱体的体积公式
(1)教师演示:
同学们看老师手中的这个圆柱,我先把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。
下面请同学们拿出自己的学具动手拼一拼,看拼起来是什么形体。
(2)学生操作(教师要注意巡视指导)
(3)启发学生观察、思考、讨论:
①圆柱体切开后可以拼成一个什么形体?(近似的长方体)
②通过刚才的实验你发现了什么?(教师要注意启发、引导)
a、拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。
b、拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。
c、近似长方体的高就是圆柱的高,没有变化。
(4)教师演示,学生观察。
同学们,刚才我们把圆柱的底面平均分成了16份,切割后再拼起来,拼成了一个近似的长方体,下面请同学们仔细观察:(教师边利用电脑出示图形边提问)
①如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?
②如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?
③如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?
(利用电脑使学生直观地认识到,分的份数越多,拼起来就越近似于长方体)
(5)启发学生说出通过以上的观察,发现了什么?
①平均分的份数越多,拼起来的形体越近似于长方体。
②平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
(学生回答时,教师要注意启发、点拨。如果学生回答有困难,可把演示的三个近似的长方体,放在同一画面,让学生观察比较)
(6)启发学生思考回答:
为什么要把圆柱体拼成近似的长方体?你从中发现了什么?
①圆柱体与近似的长方体,形状不同,体积相同。
②我们学过长方体的体积公式,如果把圆柱体转化成近似的长方体,圆柱体的体积就可以计算了。
(7)推导圆柱的体积公式:
①学生分组讨论:圆柱体的体积怎样计算?
②学生汇报讨论结果,并说明理由。
因为长方体的体积等于底面积乘以高。(板书:长方体的体积=底
↓
面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积
↓
),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘以高。(板书:=、×)
③用字母表示圆柱的体积公式。(板书:V=sh)
④启发学生回答:求圆柱的体积必须具备哪两个条件?
(8)反馈练习:
口答,只列式不计算:
①底面积是10,高是2,体积是()
②底面积是3,高是4,体积是()
2、教学例4、
(1)出示例4、
(2)学生独立进行计算。(教师巡视,注意发现学生计算中存在的问题)
(3)订正。(如发现有50×2、1的,让学生板演讲解,使学生自己明白错误的原因,从而加深印象。如果发现计算没有出现错误,也可让学生板演,并正确地表述)
(4)反馈练习:完成第9页练一练第1题。
一名学生在小黑板上做,其余学生在练习本上做,然后订正。
3、启发学生思考回答:计算圆柱的体积,还可能有哪些情况?(学生回答时,要让学生说出计算思路)
(1)已知圆柱的底面半径和高,求体积。
(2)已知圆柱的底面直径和高,求体积。
(3)已知圆柱的底面周长和高,求体积。
反馈练习:完成第9页练一练第2题,学生口述解题思路,不计算。
4、教学例5
(1)出示例5。
(2)引导学生分析题意:
①这道题已知什么?求什么?
②要求水桶的容积,应先求什么?再求什么?
(3)求水桶的底面积:(学生在练习本上解答,然后订正)
板书:(1)水桶的底面积:
(4)求水桶的容积:(让学生填在书上的空白处,然后订正)
板书:(2)水桶的容积:
3、14×25
=7850(立方厘米)
≈7。9(立方分米)
答:这个水桶的容积大约是7。9立方分米。
三、巩固发展
1、完成练一练第3题。
投影出示题目内容,学生独立完成。
2、完成练一练第4题。
学生独立解答,集体订正,并说解题思路。
3、一个圆柱形水池,半径是10米,深1、5米。这个水池占地面积是多少?水池的容积是多少立方米?
学生独立解答,然后订正。
四、全课总结
通过本节课的学习,你有什么收获?(启发学生从两个方面谈:圆柱体体积公式的推导方法和公式的应用)
五、布置作业:练一练第5—6题。
【教学内容】
《义务教育课程标准实验教材 数学》六年级上册第2~3页。
【教学目标】
1、能在具体的情境中,探索确定位置的方法,说出某一物体的位置。会在方格纸上用“数对”确定位置。
2、通过形式多样的游戏与练习,让学生熟练掌握用数对确定位置的方法,发展其空间观念,初步体会到数行结合的思想,提高学生运用所学知识解决实际问题的能力。
3. 体会生活中处处有数学,体会数学的价值,培养对数学的亲切感。
【教学重点】
使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。
【教学难点】
在方格纸上用“数对”确定位置。
【教学过程】
一、从实际情景入手,引入新知,使学生学会在具体情景中用数对确定位置
1、谈话引入。
今天有这么多老师和我们一起上课,同学们欢迎吗?
老师们都很想认识你们。咱们先来给他们介绍一下我们班的'班长,可以吗?
2、合作交流,在已有经验的基础上探究新知。
(1)出示要求:以小组为单位,想一想,可以用什么方法表示出班长的位置,把你的方法写或画在纸上。
汇报:班长的位置在第4组的第三个,他在从右边数第二组的第三排…
哪个小组也用语言描述出了班长的位置?
请班长起立,他们的描述准确吗?
刚才同学们的描述有什么相同和不同?(都表示的是班长的位置,有的同学说第几组,第几行,第几排……)
看来在日常生活中,我们可以用组、排、行、等多种方式,还可以从不同的方位来描述物体的位置。为了我们在确定位置的时候语言达成一致,一般规定:竖排叫列,横排叫行。
板书:列 行
老师左手起第一组就是第一列…,横排就是第一行…
班长的位置在第4列、第3行。
还有其他的表示方法吗?