教学设计是一项系统工程,它是由教学目标和教学对象的分析、教学内容和方法的选择以及教学评估等子系统所组成,各子系统既相对独立,又相互依存、相互制约,组成一个有机的整体。以下是勤劳的编辑给大伙儿整理的高中物理教学设计【优秀8篇】,希望对大家有所帮助。
教学目标:
1、知识与技能
(1)解释速度的概念,能够概括速度的定义、公式、符号、单位和物理意义。
(2)解释平均速度、瞬时速度的定义并学会辨析。
(3)能够说出速率的概念并辨认速度与速率。
2、过程与方法
(1)在概念转变的教学过程中形成全面、正确的关于速度的概念。
(2)通过平均速度引出瞬时速度的过程,锻炼使用极限思维。
(3)通过对平均速度与瞬时速度、速度与速率的区别和分辨,学会运用辨析的方法。
3、情感态度与价值观
(1)对速度全面正确地解释来积极培育自身科学严谨的态度。
(2)积极将自己的观点及见解与老师、同学进行交流。
(3)通过本节课的学习尝试体会物理学中蕴含的对立统一。
课型:新授课
课时:第一课时
学情分析:
一般而言,高一学生在经历了初中阶段的学习后,思维能力得到了较好的发展,抽象逻辑思维逐渐取代形象思维占据主要地位。学生的一般特征主要表现为以下几个方面:
(1)学生能够按照探究性学习的过程利用假设思维进行学习;
(2)学生在学习过程中自我调控能力得到了进一步加强,学习过程更加具有目的性;
(3)在某种程度下学生思维不再是“抱残守缺”,而是较为容易接受新事物;
(4)学生学习动机由兴趣支撑逐渐转变为由意志支撑,学习的目的性更加明确;
(5)学生之间的交流对于学生学习具有一定的影响。
关于“速度”的学习,学生在初中阶段科学学科中所接受的定义是,单位时间内通过的路程。这与高中对于“速度”的定义截然不同,学生虽然通过初中阶段的学习具备了一定的基础,但这个基础里大部分仍然是迷思概念。如何将初中阶段所接受到的关于“速度”的迷思概念转变为科学概念,达到一个新的认知平衡是本节课的一条主线。同时也应该认识到学生在初中阶段的学习以及前面关于“位移”、“路程”的学习为本节课奠定了一个很好的基础。
本节课可能存在的问题有两个,一是学生根据初中阶段的学习积累对于“速度”难以产生正确、客观的认识,其中所存在的迷思概念需要在教学过程中进行转变;二是学生对于“平均速度”、“瞬时速度”两个概念可能会有所混淆,教师应该利用课堂呈现的问题情境引导学生进行有效区分。
教学重点:
速度的概念,由平均速度通过极限的思维方法引出瞬时速度。
教学难点:
对瞬时速度的理解,怎样由平均速度引出瞬时速度。
教学方法:
问题情境引入、探测已有概念、产生认知冲突、解构迷思概念和建构科学概念、形成新的认知平衡。
教学过程:
引入:速度的二段式测验3道题,情境引入,激发学生产生冲突。
(一)速度
“速度”的引入:运动会上,要比较哪位运动员跑得快,可以用什么方法?通过相同的位移比较时间的长短。若运动的时间是相等的,我们可以根据位移的大小来比较。如果运动的位移、所用的时间都不一样,又如何比较呢?
在物理学中,我们引入速度这个物理量来描述物体运动的快慢。
1、定义:位移Δx与发生这个位移所用时间Δt的比值(比值定义法)。
描述物体运动快慢的物理量。
2、国际单位:m/s或m·s-1,其他单位:km/h等
3、速度是矢量,方向与运动方向相同。
在匀速直线运动中,速度保持不变。如果物体做变速直线运动,速度的大小不断改变,根据求得的则表示物体在Δt时间内的平均快慢程度,称为平均速度。
(二)平均速度和瞬时速度
1、平均速度
⑴公式:
⑵平均速度是矢量,方向即位移的方向。
对于变速直线运动,各段的平均速度一般并不相同,求平均速度必须指明“哪段时间”或“哪段位移”。
⑶求平均速度必须指明“哪段时间”或“哪段位移”。
过渡:平均速度只能粗略的描述物体运动的快慢,为了精确地描述做变速直线运动的物体运动的快慢,我们可以将时间Δt取得非常小,接近于零,这是求得的速度值就应该是物体在这一瞬时的速度,称为瞬时速度。
2、瞬时速度
⑴定义:物体在某一时刻(或某一瞬间)的速度。
⑵瞬时速度简称速度,方向为物体的运动方向。
在日常生活中,人们对“速度”这一概念并不一定明确指出是“平均速度”还是“瞬时速度”,我们应根据上下文去判断。“平均速度”对应的是一段时间,“瞬时速度”对应的是某一时刻。
3、瞬时速率:瞬时速度的大小,简称速率。
例:课本P16汽车速度计上指针所指的刻度是汽车的瞬时速率。
(三)平均速率:物体运动的路程与所用时间的比值。
与“平均速度的大小”完全不同。
例1:下列对各种速率和速度的说法中,正确的是( )
A.平均速率就是平均速度
B.瞬时速率是指瞬时速度的大小
C.匀速直线运动中任意一段时间内的平均速度都等于其任一时刻的瞬时速度
D.匀速直线运动中任何一段时间内的平均速度都相等
例2:一辆汽车沿平直的公路行驶
⑴若前一半位移的平均速度是v1,后一半位移的平均速度是v2,求全部路程的平均速度;
⑵若汽车前一半时间的平均速度是v1,后一半时间的平均速度是v2,求全部路程的平均速度。
总结:平均速度不是速度的平均值,应严格按照定义来计算。
例3:人乘自动扶梯上楼,如果人站在扶梯上不动,扶梯将人送上楼去需用30s。若扶梯不动,某人沿扶梯走到楼上需20s。试计算这个人在扶梯开动的情况下仍以原来的速度向上走,需要多长时间才能到楼上?(12s)
一、教材分析
本节内容是在上一节安培力的基础上,进一步形成的新的知识点。重在让学生理解什么是洛伦兹力、并掌握洛伦兹力的方向判断和大小的计算。它也是后续学习《带电粒子在匀强磁场中运动》的知识基础。
本课教材在提出洛伦兹力的概念后,重在引导学生由安培力的方向和大小得出洛伦兹力的方向和大小,这种通过实验结合理论探究洛伦兹力的方向,再由安培力表达式推导出洛伦兹力的表达式的过程是培养学生逻辑思维能力的好机会,一定要让学生都参与进来。
二、学情分析
知识基础:学生已经学习了《磁场对通电导线的作用力》一节,知道如何判断安培力的方向以及如何计算安培力的大小。但对于安培力产生的原因,却还不甚清楚。
技能基础:学生已经具备一定的逻辑推理分析能力,因此本节课可以引导学生思考安培力的产生原因,激发学生的求知欲,引入探究式学习。
三、教学目标
(一)知识与技能
1、知道什么是洛伦兹力。利用左手定则判断洛伦兹力的方向。
2、知道洛伦兹力大小的推理过程。
3、掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算。
4、了解v和B垂直时的洛伦兹力大小及方向判断。理解洛伦兹力对电荷不做功。
5、了解电视显像管的工作原理
(二)过程与方法
通过观察,形成洛伦兹力的概念,同时明确洛伦兹力与安培力的关系(微观与宏观),借助洛伦兹力与安培力的关系,猜想并验证洛伦兹力的方向也可以用左手定则判断;通过思考与讨论,推导出洛伦兹力的大小公式F=qvBsinθ。最后了解洛伦兹力的一个应用——电视显像管中的磁偏转。
(三)情感态度与价值观
进一步学会观察、分析、推理,培养科学思维和研究方法。认真体会科学研究最基本的思维方法:“推理—假设—实验验证”。
四、教学重点与难点
重点:
1、利用左手定则会判断洛伦兹力的方向。
2、掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算。
这一节承上(安培力)启下(带电粒子在磁场中的运动),是本章的重点
难点:
1、洛伦兹力对带电粒子不做功。
2、洛伦兹力方向的判断。
五、教学资源
电子射线管、高压电源、磁铁、多媒体课件
六、教学设计思路
根据对本节教材内容的分析,结合学情和相关教学资源,本节课以“情景问题猜想实验验证理论推导应用巩固”的思路进行设计。
课前通过观看“极光美景”视频,引出本节主题。然后借助“阴极射线管”演示实验指出磁场对运动电荷有力的作用,并激发学生学习的兴趣。课中借助安培力的方向,让学生通过猜想加验证的方式,学习并掌握洛伦兹力方向的判定方法,并进一步得出安培力与洛伦兹力的内在关系;借助安培力大小的计算公式,引导学生推导得出洛伦兹力大小的计算公式。最后通过练习加深对洛伦兹力的理解,并回答引入部分提出的问题。
教学过程中,以演示实验调动学生兴趣,引导学生观察、分析实验现象,围绕难点“洛伦兹力的方向”的理解,通过情景转换,老师引领、学生动手,同学互动,师生互动的方式,让学生感受,体验知识的生成过程。
七、教学过程:
(一)引入
视频欣赏:天文现象——极光
提问:为什么极光只出现在南北两极呢?
引导:解开此谜题的钥匙就是,磁场对运动电荷的作用规律。
[演示实验]观察磁场阴极射线在磁场中的偏转
[教师]说明电子射线管的原理:
说明阴极射线是灯丝加热放出电子,电子在加速电场的作用下高速运动而形成的电子流,轰击到长条形的荧光屏上激发出荧光,可以显示电子束的运动轨迹,磁铁是用来在阴极射线周围产生磁场的,还应明确磁场的方向。
提示:
1、没有磁场时,接通高压电源可以观察到什么现象。
2、光束实质上是什么?
3、若在电子束的路径上加磁场,可以观察到什么现象?
4、改变磁场的方向,通过观查从而判断运动的电子在各个方向磁场中的受力方向。
[实验结果]在没有外磁场时,电子束沿直线运动,蹄形磁铁靠近电子射线管,发现电子束运动轨迹发生了弯曲。
[学生分析得出结论]磁场对运动电荷有力的作用。------引出新课
(二)新课讲解
1、物理学中把磁场对运动电荷的作用力称为洛伦兹力。(展示洛伦兹介绍资料)
2、提问:如何探究洛仑兹力呢?
引导学生思考:
1)、电流怎么形成的?
2)、磁场对电流的作用、磁场对运动电荷的作用,两者间有何关联?
进一步引导学生分析:通电导线在磁场中为什么会受力?得出安培力与洛伦兹力的关系。
【说明】可以根据磁场对电流有作用力而对未通电的导线没有作用力,引导学生提出猜想:磁场对电流作用力的实质是磁场对运动电荷作用力的积累效果。即,安培力是洛伦兹力的宏观表现。
3、提问:既然安培力是洛伦兹力的宏观表现,那么,你们觉得可以如何探究洛伦兹力呢?
回答:借助对安培力的认识,探究洛伦兹力。
(1)提问:具体怎么探究呢,比如方向?
回答:左手定则
学生说明猜想理由:
1如图,判定安培力方向。(上图甲中安培力方向为垂直电流方向向上,乙图安培力方向为垂直电流方向向下)
②。电流方向和电荷运动方向的关系。(电流方向和正电荷运动方向相同,和负电荷运动方向相反)
③。F安的方向和洛伦兹力方向关系。(F安的方向和正电荷所受的洛伦兹力的方向相同,和负电荷所受的洛伦兹力的方向相反。)
④。电荷运动方向、磁场方向、洛伦兹力方向的关系。(学生分析总结)
实验验证猜想:(回顾阴极射线管实验)猜想正确!
洛伦兹力方向的判断——左手定则
伸开左手,使大拇指和其余四指垂直且处于同一平面内,把手放入磁场中,让磁感线垂直穿入手心,若四指指向正电荷运动的方向,那么拇指所受的方向就是正电荷所受洛伦兹力的方向;若四指指向是电荷运动的反方向,那么拇指所指的正方向就是负电荷所受洛伦兹力的方向。
【要使学生明确】:正电荷运动方向应与左手四指指向一致,负电荷运动方向则应与左手四指指向相反(先确定负电荷形成电流的方向,再用左手定则判定)。
[投影出示练习题]试判断各图中带电粒子受洛伦兹力的方向,或带电粒子的电性、或带点粒子的运动方向。
[学生解答]
最后,通过“思考与讨论”,说明由洛伦兹力所引起的带电粒子运动的方向总是与洛伦兹力的方向相垂直的,所以它对运动的带电粒子总是不做功的。
(2)、洛伦兹力的大小
现在我们来研究一下洛伦兹力的大小。通过下面的命题引导学生一一回答。
设有一段长度为L的通电导线,横截面积为S,导线每单位体积中含有的自由电荷数为n,每个自由电荷的电量为q,定向移动的平均速率为v,将这段导线垂直于磁场方向放入磁感应强度为B的磁场中,求:
(1)电流强度I。
(2)通电导线所受的安培力。
(3)这段导线内的自由电荷数。
(4)每个电荷所受的洛伦兹力。
得出洛伦兹力的计算公式:当粒子运动方向与磁感应强度垂直时():
问题:若带电粒子不垂直射入磁场,粒子受到的洛伦兹力又如何呢?
引导学生进行分析:可将磁场分解(类比安培力公式得出方式)得出结论
当粒子运动方向与磁感应强度方向成θ时(v∥B)F=qvBsinθ
上两式各量的单位:F为牛(N),q为库伦(C),v为米/秒(m/s),B为特斯拉(T)
4、课堂练习
1、电子的速率v=3×106m/s,垂直射入B=0.10T的匀强磁场中,它受到的洛伦兹力是多大?(4.8×10-14N)
2、当一带正电q的粒子以速度v沿螺线管中轴线进入该通电螺线管,若不计重力,则()
A.带电粒子速度大小改变
B.带电粒子速度方向改变
C.带电粒子速度大小不变
D.带电粒子速度方向不变
(答案:CD)
3、电荷量为+q的粒子在匀强磁场中运动,下列说法正确的是()
A.只要速度大小相同,所受洛伦兹力就相同
B.如果把+q改为-q,且速度反向,大小不变,则洛伦兹力的大小方向不变
C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直
D.粒子的速度一定变化
(答案:B)
4、来自宇宙的质子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些质子在进入地球周围的空间时,将()
A.竖直向下沿直线射向地面
B.相对于预定地面向东偏转
C.相对于预定点稍向西偏转
D.相对于预定点稍向北偏转
(答案:B)通过本题进一步引导学生作图分析:为什么极光只出现在地球的两极?(与课前引入相呼应)
5、。电视显像管的工作原理
(1)原理:应用电子束磁偏转的道理
(2)构造:由电子枪(阴极)、偏转线圈、荧光屏等组成(介绍各部分的作用)
在条件允许的情况下,可以让学生观察显像管的实物,认清偏转线圈的位置、形状,然后运用安培定则和左手定则说明从电子枪射出的电子束是怎样在洛伦兹力的作用下发生偏转的。
再通过“思考与讨论”,让学生弄清相关问题。进而介绍电视技术中的扫描现象。
最后让学生回忆“示波管的原理”,通过对比看看二者的差异。
(三)对本节内容做简要小结
(四)作业布置
(1)复习本节内容
(2)完成“问题与练习”
八、板书设计第5节《磁场对运动电荷的作用力》
一.洛伦兹力
1、洛伦兹力:磁场对运动电荷的作用力
安培力是洛伦兹力的宏观表现
2、洛伦兹力的方向:左手定则
F⊥vF⊥B
3、洛伦兹力大小:F洛=qVBsinθ
V⊥BF洛=qVB
V∥BF洛=0
4、特点:洛伦兹力只改变力的方向,不改变力的大小,洛伦兹力对运动电荷不做功
二.电视显像管的工作原理
1、原理
2、构造
九、教学反思
本节课利用极光这一神奇的自然现象,通过阴极射线在磁场中的偏转演示实验来引入新课,新奇的实验现象极大地吸引了学生的兴趣,明显的实验现象使学生很容易总结出磁场对运动电荷有力的作用。通过电荷的定向运动形成电流,推导出伦兹力与安培力的关系(微观与宏观),由此可以借助安培力来探究洛伦兹力的大小和方向。最后了解洛伦兹力的一个应用——电视显像管中的磁偏转,这种与生活联系紧密的物理知识,能激发学生对物理学科的热爱,培养学生利用所学物理知识解释生活中的现象,体现从物理走向生活的教学理念。
通过课堂练习反馈,发现本课难点在于如何让学生发挥空间想象能力,判断洛伦兹力的方向。需要在课后加强练习。
教学准备
教学目标
知识与技能
1、知道时间和时刻的区别和联系。
2、理解位移的概念,了解路程与位移的区别。
3、知道标量和矢量,知道位移是矢量,时间、时刻和路程是标量。
4、能用数轴或一维直线坐标表示时刻和时间、位置和位移。
5、知道时刻与位置、时间与位移的对应关系。
过程与方法
1、围绕问题进行充分的讨论与交流,联系实际引出时间、时刻、位移、路程等,要使学生学会将抽象问题形象化的处理方法。
2、会用坐标表示时刻与时间、位置和位移及相关方向
3、会用矢量表示和计算质点位移,用标量表示路程。
情感态度与价值观
1、通过时间位移的学习,要让学生了解生活与物理的关系,同时学会用科学的思维看待事实。
2、通过用物理量表示质点不同时刻的不同位置,不同时间内的不同位移(或路程)的体验,领略物理方法的奥妙,体会科学的力量。
3、养成良好的思考表述习惯和科学的价值观。
4、从知识是相互关联、相互补充的思想中,培养同学们建立事物是相互联系的唯物主义观点。
教学重难点
教学重点
1、时间和时刻的概念以及它们之间的区别和联系
2、位移的概念以及它与路程的区别。
教学难点
1、帮助学生正确认识生活中的时间与时刻。
2、理解位移的概念,会用有向线段表示位移
教学工具
多媒体、板书
教学过程
一、时刻和时间间隔
1、基本知识
(1)时刻是指某一瞬间,时间间隔表示某一过程。
(2)在表示时间的数轴上,时刻用点来表示,时间用线段来表示。
(3)在国际单位制中,表示时间和时刻的单位是秒,它的符号是s.
2、思考判断
(1)时刻和时间间隔都是时间,没有本质区别。(×)
(2)飞机8点40分从上海起飞,10点05分降落到北京,分别指的是两个时间间隔。(×)
(3)20__年10月25日23时33分在西昌成功将第16颗北斗导航卫星发射升空。25日23时33分,指的是时刻。(√)
探究交流
时间的常用单位有哪些?生活中、实验室中有哪些常用的计时仪器?
【提示】在国际单位制中,时间的单位是秒,常用单位有分钟、小时,还有年、月、日等。生活中用各种钟表来计时,实验室和运动场上常用停表来测量时间,若要比较精确地研究物体的运动情况,有时需要测量和记录很短的时间,学校的实验室中常用电磁打点计时器或电火花计时器来完成。
二、路程和位移
1、基本知识
(1)路程
物体运动轨迹的长度。
(2)位移
①物理意义:表示物体(质点)位置变化的物理量。
②定义:从初位置到末位置的一条有向线段。
③大小:初、末位置间有向线段的长度。
④方向:由初位置指向末位置。
2、思考判断
(1)路程的大小一定大于位移的大小。(×)
(2)物体运动时,路程相等,位移一定也相等。(×)
(3)列车里程表中标出的北京到天津122km,指的是列车从北京到天津的路程。(√)
探究交流
一个人从北京去重庆,可以乘火车,也可以乘飞机,还可以先乘火车到武汉,然后再乘轮船沿长江到重庆,如图所示,则他的运动轨迹、位置变动、走过的路程和他的位移是否相同?
【提示】他的运动轨迹不同,走过的路程不同;他的位置变动相同,位移相同。
三、矢量和标量
1、基本知识
(1)矢量
既有大小又有方向的物理量。如位移、力等。
(2)标量
只有大小、没有方向的物理量。如质量、时间、路程等。
(3)运算法则
两个标量的加减遵从算术加减法,而矢量则不同,后面将学习到。
2、思考判断
(1)负5m的位移比正3m的位移小。(×)
(2)李强向东行进5m,张伟向北行进也5m,他们的位移不同。(√)
(3)路程是标量,位移是矢量。(√)
探究交流
温度是标量还是矢量?+2℃和-5℃哪一个温度高?
【提示】温度是标量,其正、负表示相对大小,所以+2℃比-5℃温度高。
一、教学目标
1、知识目标:
(1)进一步深化对电阻的认识
(2)掌握电阻定律及电阻率的物理意义,并了解电阻率与温度的关系
2、能力目标:
(1)通过类比,培养学生分析解决三个变量之间关系的科学研究方法
(2)通过从猜想→研究方法→实验操作等一系列探索过程,使学生掌握如何获取知识,发展思维能力。
3、德育渗透点:
(1)通过对各种材料电阻率的介绍,加强学生安全用电的意识
(2)通过我国对超导现象的研究介绍,激发学生爱国和奋发学习的精神。
二、教学重点、难点分析
1、重点:电阻定律
2、难点:电阻率
3、疑点:超导现象的产生
4、解决办法
①对于重点,主要是通过课堂上师生一起(教师动手,学生观察)探索,最后用科学的处理方法导出定律,这样加深了学生对该知识点的渗透。
②对于难点,主要是通过与电阻的比较,从而明确电阻是反映导体本身属性;电阻率是材料本身的属性。
③对于疑点主要是通过实验来加强直观感觉。
三、教学方法:
实验演示,启发式教学
四、教 具:
电阻定律示教板(含金属丝) 学生电源 电流表 伏特表 滑动变阻器 电键 导线 火柴 废弃的“220V 40W”白炽灯 幻灯片 投影仪 计算机 自制CAI课件
五、教学过程:
(一)提出问题,引入新课
1、为了改变电路中的电流强度,怎样做?
由欧姆定律I=U/R,只要增加导体两端的电压U或降低导体电阻R即可。
2.R=U/I的含义,如何测定电阻(让学生自己设计电路)?
从上述的回答我们不难发现电阻R与两端电压及流过电流强度无关,那么它由谁决定呢?
(二)进行新课
1、探索定律——电阻定律
①R可能与哪些因素有关?(科学猜想)
(材料、长度、横截面积、温度……)
②解决方法——控制变量法。(回忆欧姆定律的研究或牛顿第二定律的研究)
③演示实验 幻灯投影电路图。
A.出示电阻定律示教板、金属材料
B.教师与学生一起连接电路,先让E、F分别接A、a,测得一组数据(U、I)记入下表。然后把a、b用短导线连接,E、F分别接A、B,又得一组(U、I)。再把A、B用一短线连接,E、F分别接A(B)a(b)。又得一组数据(U、I)。
C.换用E、F分别接不同材料金属丝C、c,又得一组数据。
D.分析数据
a)先定性观察→R与材料、长度、横截面积有关
b)定理推理
2、电阻定律
①内容——在温度不变时,导线的电阻与它的长度成正比,跟它的横截面积成反比。
②表达式
说明 ——长度 S——横截面积 ——比例系数
3、电阻率——
①单位 欧米
②物理意义 反映材料导电性能好坏。在数值上它等于用该材料制成的1m长,横截面积为1m2的导体电阻。
③测量——学生思考
(幻灯投影书上154页各材料电阻率——20℃时)
引导学生结合生活实际,了解为了电业工人的安全,为使在相同电压下电流小,选用电阻率较大的橡胶、木头等制造电工用具把套。
④电阻率与温度关系
由表格上面写着20℃,要学生明白这意味着这张表格的数据是在20℃时测得的,即电阻率与温度有关。
[演示](幻灯投影电路图)
连接,用火柴点燃来加热白炽灯灯丝后再移开。
现象: 发现小灯泡先变暗后又慢慢变亮
材料的电阻率随温度变化而变化。利用金属的电阻率随温度升高而增大,制成温度计(电阻温度计),但也有些材料的电阻率不随温度改变而改变。
(三)例题精讲
【例】 把一均匀导体切成四段并在一起,电阻是原来的多少倍?拉长四倍后是原来多少倍?
解析:由电阻定律
切成四段体积不变,故 S→4S
所以 变为同理拉长四倍后, 变为原来的16倍
(四)总结、扩展
打开计算机,利用多媒体教学课件再次展示决定电阻大小的因素,再现实验现象,形象直观,给学生留下深刻的印象。
本节课主要通过猜想→探索→得出定律的过程验证,并得到了电阻定律,由实验感知电阻率与温度的关系,关于超导的应用有待同学们进一步去探讨。
六、布置作业
1、第154页(1)(2)(3)题做在作业本上。
2、思考154页(4)题
教学目的
1.了解组成物质的分子具有动能及势能,并且了解分子平均动能和分子势能都与哪些因素有关。
2.理解物体的内能以及物体内能由物体的状态所决定。
教学重点
物体的内能是一个重要的概念,是本章教学的一个重点。学生只有正确理解物体的内能才能理解做功和热传递及物体内能的变化关系。
教学难点
分子势能。
教学过程
一、复习提问
什么样的能是势能?弹性势能的大小与弹簧的形变关系怎样?
二、新课教学
1.分子动能。
(1)组成物质的分子总在不停地运动着,所以运动着的分子具有动能,叫做分子动能。
(2)启发性提问:根据你对布朗运动实验的观察,分子运动有什么样的特点?
应答:分子运动是杂乱无章的,在同一时刻,同一物体内的分子运动方向不相同,分子的运动速率也不相同。
教师分析分子速率分布特点——在同一时刻有的分子速率大,有的分子速率小,从大量分子总体来看,速率很大和速率很小的分子是少数,大多数分子是中等大小的速率。
教帅进一步指出:由于分子速率不同,所以每个分子的动能也不同。对于热现象的研究来说,每个分子的动能是毫无意义的,而有意义的是物体内所有分子动能的平均值,此平均值叫做分子的平均动能。
(3)要学生讨论研究。
用分子动理论的观点,分析冷、热水的区别。
讨论结论应是:组成冷、热水的大量分子的速率各不相同,则其动能也各不相同,但就冷水总体来说分子的平均动能小于热水的分子平均动能。
教师指出:由此可见,温度是物体分子平均动能的标志。
2.分子势能。
(1)根据复习提问的回答(地面上的物体与地球之间有相互作用力;发生了形变的弹簧各部分间存在着相互作用力,因此在它们的相对位置发生变化时,它们之间便具有势能)说明分子间也存在着相互作用力,所以分子也具有由它们相对位置所决定的能,称之为分子势能。
(2)分子势能与分子间距离的关系。
提问:分子力与分子间距离有什么关系?
应答:当r=r0时,F=0,r<r0时,F为斥力,r>r0时,F为引力。
教师指出:由于分子间既有引力又有斥力,好象弹簧形变有伸长或压缩两种情况,因此分子势能与分子间距离也分两种情况。
①当r>r0时,F为引力,分子势能随着r的增大而增加。此种情况与弹簧被拉长弹性势能的增加很相似。
②当r< p="">
小结:分子势能随着分子间距离变化而变化,而组成物体的大量分子间距离若增大(减小)则宏观表现为物体体积增大(减小)。可见分子势能跟物体体积有关。
(3)物体的内能。
教师指出:物体里所有的分子动能和势能的总和叫做物体的内能。由此可知一切物体都具有内能。
①物体的内能是由它的状态决定的(状态是指温度、体积、物态等)。
提问:对于质量相等、温度都是100℃的水和水蒸气来说它们的内能相同吗?
应答,质量相等意味着它们的分子数相同,温度相等意味着它们的平均动能相同,但由于水蒸气分子间平均距离比水分子间平均距离大得多,分子势能也大得多,因而质量相等的水蒸气的内能比水大。
②物体的状态发生变化时,物体的内能也随着变化。
举例说明:当水沸腾时,水的温度保持不变,所供给的大量能用于把分子拉开,增大了分子势能,因而增大了物体的内能,当水汽凝结时,分子动能没有明显变化,但分子靠得更紧密了,分子势能便减小了,因此物体的内能减小了。
③物体的内能是不同于机械能的另一种形式的能。
a.静止在地面上的物体以地球为参照物,物体的机械能等于0,但物体内部的分子仍然在不停地运动着和相互作用着,物体的内能永远不能为0。
b.物体在具有一定的内能时,也可以具有一定的机械能。如飞行的子弹。
C.不能把物体的机械能和物体的内能混淆。只要物体的温度、体积、物态不变,不论物体的机械能怎样变化其内能仍保持不变。反之,尽管物体的内能在变化,它的机械能可以保持不变。
(4)学生讨论题:
①静止在光滑水平地面上的木箱具有什么能?若木箱沿光滑水平地面加速运动,木箱具有什么能?此时木箱的内能与静止时相比较变化了没有?
②质量相等而温度不相等的两杯水,哪一杯水具有较大的内能?温度相同而质量不等的两杯水,哪一杯水具有较大的内能?
最后总结一下本课要点。
1.了解内能的概念,能简单描述温度和内能的关系。
2.知道做功和热传递都可以改变物体的内能。
3.了解热量的概念,知道热量的单位是焦耳。
(一)教学目的
1、知道什么是机械运动,知道机械运动是宇宙中最普遍的现象。
2、知道什么叫参照物,知道判断物体的运动情况需要选定参照物。知道运动和静止的相对性。
3、知道什么是匀速直线运动。
(二)教具
1米长的一端封闭的玻璃管,管内注入水,并留约2厘米长的一段空气柱,管口被封闭;节拍器(或秒表)。
(三)教学过程
一、复习提问
1、常用的测量长度的工具是什么?常用的长度单位有哪些?它们之间的换算关系是怎样的?
2、完成下列长度单位的换算,要求有单位换算的过程。由两名同学到黑板上演算,其他同学在笔记本上进行练习。
教师口述:0.2千米=______厘米。(答:2×104厘米)
500微米=______米。(答:0.0005米)
对学生所答进行讲评。
3、用最小刻度是毫米的刻度尺测量课本图1—5甲图中木块的实际长度。要求每个学生动手测量。由同学说出测量结果。巩固上节所学正确使用刻度尺测长度、正确读、记测量结果和减小误差的基本知识。
二、新课教学
1、新课的引入
组织同学阅读课本节前大“?”的内容。提问:飞机在天空中飞行,子弹在运动吗?飞行员为什么能顺手抓住一颗飞行的子弹呢?要回答这些问题,我们就要认真学习有关物体运动的知识。
板书:“第二章简单的运动
一、机械运动”
2、机械运动
(1)什么是机械运动?
运动是个多义词,物理学里讲的运动是指物体位置的变化。同学们骑自行车时,人和自行车对地面或路旁的树都有位置的变化;飞机在天空中飞行,它相对于地面有位置的变化。物理学里把物体位置的变化叫机械运动。
(2)机械运动是宇宙中最普遍的运动。
提问并组织学生回答:举例说明我们周围的物体哪些是在做机械运动。
对于回答中所举机械运动实例,教师要明确指出是哪个物体相对什么物体有位置的改变。
组织同学看课本图2—2,提问:图中的哪些物体在做机械运动?
答:图2—2中运动员、足球、列车、地球、人造卫星、太阳系、银河系都在不停地做机械运动。
问:图中的铁轨,地球上的树木、高山,我们教室中的课桌和椅子是运动的吗?
答:它们都在跟随地球自转,同时绕太阳公转,他们也在做机械运动。
小结:机械运动是宇宙中最普遍的现象。
板书:“1.物体位置的变化叫做机械运动。机械运动是宇宙中最普遍的现象。”
3、运动和静止的相对性
(1)组织学生看课本图2—3,讨论:乘客是静止的还是运动的?让学生充分说明自己的看法。
小结:
首先明确本问题中研究对象是汽车中的乘客,这位乘客是静止的还是运动的。
其次根据前面所学机械运动的知识,判定汽车、司机和乘客都在做机械运动。但是司机和男孩所说乘客是静止的或是运动的说法都有道理。因为他们在研究乘客的运动情况时,选定的作为标准的物体不同。
问:司机看到乘客没动是静止的,是以什么为标准的。
答:以车厢为标准,乘客相对于车厢没有位置的改变,所以说乘客是静止的。
问:男孩看到乘客运动得很快,他是以什么为标准的。
答:男孩以路面或路旁的树木、房屋为标准,乘客相对于路面有位置的改变。所以他说乘客是运动的。
教师小结:在描述物体是运动还是静止,要看是以哪个物体做标准。这个被选作标准的物体叫做参照物。同一个物体是运动还是静止,取决于所选定的参照物。这就是运动和静止的相对性。
板书:“2.运动和静止的相对性:①:在描述物体的运动情况时,被选作标准的物体叫参照物。
②同一个物体是运动还是静止,取决于所选的参照物,这就是运动和静止的相对性。”
(2)提问:看课本图2—4,卡车和联合收割机在农田里并排行驶,受油机与大型加油机在空中飞行,说它们是运动的,你选什么物体为参照物。
答:选大地为参照物,它们是运动的。
教师追问:在甲图中如果选卡车或收割机为参照物,在乙图中如果选受油机或加油机为参照物,另一物体的运动情况是怎样的?
答:另一物体是静止的。因为它们相对于参照物没有位置的改变
教师小结:像卡车和收割机这样两个物体以同样的快慢,向同一方向运动,它们的相对位置不变,则称这两个物体相对静止。
提问:请你解释法国飞行员能顺手抓住一颗子弹的道理。
要求学生用相对静止的道理予以解释。
教师指出:参照物可以任意选择,在研究地面上物体的运动时,常选地面或固定在地面上的物体为参照物。举例例说明当所选的参照物不同时,物体的运动情况一般不相同。例如列车中的乘客以地面为参照物是运动的,以车厢为参照物是静止的。
4、匀速直线运动
(1)自然界中最简单的机械运动是匀速直线运动。
(2)什么是匀速直线运动
演示实验:启动节拍器,使两响之间间隔1秒钟(如果没有节拍器,可由学生读秒表)。将1米长的内封气泡的玻璃管竖直靠放在黑板上。使气泡由管底竖直上升,从零时刻开始,在每个节拍时,在气泡所在的位置旁用粉笔在黑板上画出一个个短横线(以气泡的上沿或下沿为准),这些横线由下到上等距离排列。
改变节拍器摆锤的位置,增大(或减小)摆的周期,重做上述实验。此时要平移玻璃管在黑板上的位置,每组记画横线不可重叠。
用刻度尺测相同的时间间隔内,气泡通过的距离。
提问:你认为气泡的运动有什么特点?
教师讲述:运动的气泡经过的路线是直的,并且在相等的时间里通过的距离相等,即快慢是不变的。这种快慢不变,经过路线是直线的运动,叫做匀速直线运动。
板书:“3.匀速直线运动:快慢不变,经过路线是直线的运动,叫做匀速直线运动。”
匀速直线运动在自然界中并不多见,但是许多运动可以近似地看作是匀速直线运动。
提问:百米跑运动员,从起跑线起跑,跑到终点,他的运动是匀速直线运动吗?(答:可以近似地看作是匀速直线运动。)
5、小结本节知识要点
三、布置作业
课本P2—4,练习1、2、3、4。
四、说明
由于在义务教育全日制初级中学物理教学大纲(试用)中,参照物并未作为教学内容列出。建议在教学中只需让学生对参照物的概念有个很初步的了解,懂得要描述物体是运动还是静止需要选个参照物就够了,不要在教学中补充较为复杂的例题,造成学生学习上的困难。
教学目标
1、知识与技能
(1)知道平抛运动的特点是初速度方向水平,只有竖直方向受重力作用,运动轨迹是抛物线;
(2)知道平抛运动形成的条件;
(3)理解平抛运动是匀变速运动,其加速度为g;
(4)会用平抛运动规律解答有关问题。
2、过程与方法
(1)在知识教学中应同时进行科学研究过程教育,本节课以研究平抛物体运动规律为中心所展开的课堂教学,应突出一条研究物理科学的一般思想方法的主线:
观察现象→初步分析→猜测实验研究→得出规律→重复实验→鉴别结论→追求统一。
(2)利用已知的直线运动的规律来研究复杂的曲线运动,渗透物理学“化曲为直”“化繁为简”的方法及“等效代换”正交分解”的思想方法;
(3)在实验教学中,进行控制的思想方法的教育:从实验的设计、装置、操作到数据处理,所有环节都应进行多方面实验思想的教育,“实验的精髓在于控制”的思想,在乎抛物体实验中非常突出。如装置中斜槽末端应保持水平的控制;木板要竖直放置的控制;操作上强调小球每次都从斜槽同一高度处由静止开始释放的控制;在测量小球位置时对实验误差的控制等。
3、情感、态度与价值观
(1)通过重复多次实验,进行共性分析、归纳分类,达到鉴别结论的教育目的,同时还能进行理论联系实际的教育。
(2)在理解平抛物体运动规律是受恒力的匀变速曲线运动时应注意到“力与物体运动的关系”。这方面的问题,我国东汉的王充(公元27~97年)历尽心血三十年写成《论衡》一书,全书三十卷八十五篇约三十万字,已有精辟论述,以此渗透爱国主义教育和刻苦学习、勤奋工作精神的美德教育。
教学重难点
1、教学重点:平抛运动的特点和规律;学习和借鉴本节课的研究方法。
2、教学难点:平抛运动的规律。
教学工具
多媒体、板书
教学过程
一、实验目的
1、用实验的方法描出平抛运动的轨迹。
2、判断平抛运动的轨迹是否为抛物线。
3、根据平抛运动的轨迹求其初速度。
二、实验原理
1、利用追踪法逐点描出小球运动的轨迹。
2、建立坐标系,如果轨迹上各点的y坐标与_坐标间的关系具有y=a_2的形式(a是一个常量),则轨迹是一条抛物线。
三、实验器材
斜槽、小球、方木板、铁架台、坐标纸、图钉、重垂线、三角板、铅笔、刻度尺。
四、实验步骤
1、安装调平
将带有斜槽轨道的木板固定在实验桌上,其末端伸出桌面外,轨道末端切线水平,如图所示。
2、建坐标系
用图钉将坐标纸固定于竖直木板的左上角,把木板调整到竖直位置,使板面与小球的运动轨迹所在平面平行且靠近,把小球放在槽口处,用铅笔记下小球在槽口(轨道末端)时球心在木板上的投影点O,O点即为坐标原点,用重垂线画出过坐标原点的竖直线,作为y轴,画出水平向右的_轴。
3、确定球的位置
将小球从斜槽上某一位置由静止滑下,小球从轨道末端射出,先用眼睛粗略确定做平抛运动的小球在某一_值处的y值,然后让小球由同一位置自由滚下,在粗略确定的位置附近用铅笔较准确地描出小球通过的位置,并在坐标纸上记下该点。用同样的方法确定轨迹上其他各点的位置。
4、描点得轨迹
取下坐标纸,将坐标纸上记下的一系列点,用平滑曲线连起来,即得到小球平抛运动轨迹。
五、数据处理
1、计算初速度
在小球平抛运动轨迹上选取分布均匀的六个点——A、B、C、D、E、F,用刻度尺、三角板测出它们的坐标(_,y),并记录在下面的表格中,已知g值,利用公式y=2(1)gt2和_=v0t,求出小球做平抛运动的初速度v0,最后算出v0的平均值。
2、验证轨迹是抛物线
抛物线的数学表达式为y=a_2,将某点(如B点)的坐标_、y代入上式求出常数a,再将其他点的坐标代入此关系式看看等式是否成立,若等式对各点的坐标近似都成立,则说明所描绘的曲线为抛物线。
六、误差分析
1、斜槽末端没有调水平,小球离开斜槽后不做平抛运动。
2、确定小球运动的位置时不准确。
3、量取轨迹上各点坐标时不准确。
七、注意事项
1、实验中必须调整斜槽末端的切线水平(检验是否水平的方法是:将小球放在斜槽末端水平部分,将其向两边各轻轻拨动一次,看其是否会加速或减速运动)。
2、方木板必须处于竖直平面内,固定时要用重垂线检查坐标纸竖线是否竖直。
3、小球每次必须从斜槽上同一位置滚下。
4、坐标原点不是槽口的端点,应是小球出槽口时球心在木板上的投影点。
5、小球开始滚下的位置高度要适中,以使小球平抛运动的轨迹由坐标纸的左上角一直到达右下角为宜。
6、在轨迹上选取离坐标原点O点较远的一些点来计算初速度。
1、教学目标
1.1知识与技能
(1)知道什么是等温变化;
(2)掌握玻意耳定律的内容和公式;知道定律的适用条件。
(3)理解等温变化的P—V图象与P—1/V图象的含义,增强运用图象表达物理规律的能力;
1.2过程与方法
带领学生经历探究等温变化规律的全过程,体验控制变量法以及实验中采集数据、处理数据的方法。
1.3情感、态度与价值观
让学生切身感受物理现象,注重物理表象的形成;用心感悟科学探索的基本思路,形成求实创新的科学作风。
2、教学难点和重点
重点:让学生经历一次探索未知规律的过程,掌握一定质量的气体在等温变化时压强与体积的关系,理解p-V图象的物理意义。
难点:学生实验方案的设计;数据处理。
3、教具:
塑料管,乒乓球、热水,气球、透明玻璃缸、抽气机,u型管,注射器,压力计。
4、设计思路
学生在初中时就已经有了固体、液体和气体的概念,生活中也有热胀冷缩的概念,但对于气体的三个状态参量之间有什么样的关系是不清楚的。新课程理念要求我们,课堂应该以学生为主体,强调学生的自主学习、合作学习,着重培养学生的创新思维能力和实证精神。这节课首先通过做简单的演示实验,让学生明白气体的质量、温度、体积和压强这几个物理量之间存在着密切的联系;然后与学生一道讨论实验方案,确定实验要点,接着师生一道实验操作,数据的处理,得出实验结论并深入讨论,最后简单应用等温变化规律解决实际问题。
5、教学流程:(略)