作为一名专为他人授业解惑的人民教师,时常要开展说课稿准备工作,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。说课稿要怎么写呢?为大家精心整理了小学数学说课稿范文【优秀3篇】,希望可以启发、帮助到大家。
[教学过程]
(一)情景引入
1、今天我们教室来了一个聪明的人,你们想知道他是谁吗?(出示阿凡提卡通图像)谁认识他?
2、师简介阿凡提抽“生”“死”签的故事。(阿凡提是古时候一个很聪明的人,他喜欢帮助老百姓。所以,大家很喜欢他。但古时候的国王和有钱的坏人都很怕他,一直想要害死他,就找个罪名把他关起来。当时,这个国家有个条例,处死罪犯时要让他抽“生”“死”签,如果抽到“生”签,就不用死。国王为了要阿凡提死,就把2个字都写成“死”,有人把这件事告诉阿凡提。第二天,当国王让阿凡提抽“生”“死”签时,他不慌不忙地把一个纸团吞下,大家很惊奇他为什么这样做,阿凡提说:“吞下去的签是我的,请打开剩下的签,如果是‘死’,那我的是‘生’。)阿凡提用他的智慧逃过了一劫。今天,他来到我们教室里,想看看同学们是否和他一样用智慧来解决问题。
二 探究新知
1、拿出一个箱子,放进一个红色的球和一个黄色的球。
师:阿凡提说:“我拿了一个球,你们猜会是什么颜色的?”(学生有的说是红色的,有的说是黄色的),学生上来试一试。
师:为什么会这样呢?如果阿凡提告诉你们,他“拿的不是红色的球”,那你们知道他拿的是什么颜色的吗?你怎么想的?
2、师:阿凡提夸你们说得很好,他想和同学们一起做游戏。(请2个小朋友上来,一个拿数学书,一个拿语文书,把书藏在背后。)
(1)XX同学说:“我拿的不是数学书,请大家猜一猜,我拿的是什么书?”
(2)同桌交流。
(3)汇报。(要求有条理,说出推理方法)
3、师:阿凡提带来3张动物卡片。它们是:兔、狗、猫,准备送给3个小朋友。(出示P101页第3题,并帮3个小朋友取名字)
(1)请学生读一读图中小朋友说的话,说说和刚才猜书游戏有什么不同?
(2)小组交流.要求每个学生都要说说怎样想的。
(3)汇报(注意引导有条理的推理)
4、游戏
(1)3人一组,模仿课本P100页的例3,分配好角色,
像他们那样说一说,猜一猜。
(2)请2个小组上来演示,指名学生说说推理方法。
三 巩固新知
1、师:阿凡提夸同学们表现很好,还想出一题考考你们,有信心吗?
(1)让学生看P101页第4题,同桌互相说说他们各拍几下?
(2)汇报,指名个别学生说说如何推理的。
四 小结
同学们,今天学习的知识,你们会了吗?这些就是数学中的简单推理知识,生活中我们会常常碰到这些问题,阿凡提希望我们今后遇到这些问题时,能冷静地去推理判断,找出解决的方法。
五 下课游戏:(全班分3组,按要求走出教室。)第一组不是最先出去的,第二组跟在第三组的后面。哪组同学先走出教室?
[课后反思]
这节课的教学目标主要是初步培养学生能用清晰的语言,有条理地表达自己的推理过程。许多学生碰到问题大部分懂得怎样解决,但要他们有条理表达是较困难的'。这教时重点是让学生通过观察、思考,能有条理地表达自己推理的方法。因此,在教学中我采用以下的教学方法。
一 在故事中感受数学的趣味
《数学课程标准》指出:小学生学习过程较多关注“有趣。新奇”的事物,故事是儿童成长过程中最喜爱的伙伴它是伴着儿童成长。它能集中学生的注意力和学习的兴趣。在这教时中,我采用与教学内容有些相关的故事来引入新课,从故事中不仅初步感知推理知识,而且重要的是让学生从小树立对机智人物的喜爱和对学习数学的兴趣。
二 在游戏中感受数学的趣味
有趣的游戏可以激发学生学习兴趣,同时能激活学生的思维。在教学中我设计把例题改变成让学生参与演示,小组游戏的方式,让学生亲临其境。能清晰有条理地表达推理过程,把一节比较单调的推理知识变成生机勃勃,许多学生都争着表达自己的推理方法。
教学中也出现了一些不足之处,那就是个别学生语言表达能力较弱,不能运用有条理的数学语言进行推理表达。因此,在今后教学中应注重让学生练习“说”的能力,多让学生表达自己的想法,提高学生数学语言能力。
一、说内容
《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
二、说教材
“找次品”的教学,旨在通过“找次品”渗透优化思想。优化是一种重要的数学思想方法,运用它可迅速有效地解决实际问题。此前学习过的“沏茶”,“田忌赛马”等都运用了简单的优化思想方法,学生已经具有一定的优化意识。本节课以“找次品”这一操作活动为载体,让学生在感受解决问题策略的多样性的基础上,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受到数学的魅力。
仔细阅读教材后,发现教材的编排结构比较重视数学知识的逻辑顺序。例1安排了从5个物品中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。例2安排了9个待测物品,要求学生归纳出解决问题的最优策略,让学生经历多样化过渡到优化的思维过程。教材这样安排,考虑了学生的思维过程,但是对于刚经历找次品的学生来说,为什么要找次品?5个次品是否难度过大?找次品平均分成三份是学生在观察9个待测物品的测量过程中,比较得出的,“为什么平均分成三份是最优方案”教材没有涉及,学生的疑惑是否会更多呢?
基于上述考虑,我把教学目标定位在:
1、让学生初步认识“找次品”这类问题的基本解决手段和方法。
2、学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、通过观察多个待测物品时,让学生体会到最优化策论的成因。
三、说教法
在教材中,非常突出的一点是教材比较重视新课程背景下学生之间的小组讨论和探究。确实经过小组讨论,学生之间可以互相补充,迅速达到多种策略的有效补充。但是同时存在的问题是,该教材内容偏难,如果仅通过交流,势必优秀生言之灼灼,而后进生听之糟糟。因此我在执教时选用了学生安静思考,人人动手的形式,让每个学生都动起来,再视情况交流。在反馈中逐步得到提高。
四、说设计
(一)课前游戏。课前游戏主要是让学生明白至少需要多少次的含义,为新课教学扫清学生认知上的障碍,出现不必要的过多的纠缠。
(二)情景导入,激发兴趣。
(设计意图:“美国挑战者号失事”作为引入,让学生了解事故的原因是由一个不合格的零件造成的,让学生从血的教训中,懂得了次品的危害,领悟到严格检验的必要性,同时把人文教育渗透在教学中。)
(三)自主探索用天平找次品的基本方法。(安排了3个层次)
首先安排了从3个正品中找出一个次品来,就是从3瓶菠萝片中找出一瓶少了3片的(这样设计贴近学生的实际生活,为学生喜闻乐见,也为下面探究如何找次品作好铺垫,充分激发学生的求知欲和表现欲。增加课前准备题三瓶中找次品,利于学生进入研究状态,也考虑照顾到中下层次学生。)
紧接着我刻意安排了4这个环节(设计意图:多了4这一环节,它的作用就是为后面研究5和9中找次品打基础,看似渺小,其实起奠基作用,让学生感悟从4个中找就要比3个中找多了1次。为接下去体现划归的数学思想做准备。也为最佳策略的成因探索埋下伏笔)
最后安排5个中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。
(四)尝试解决实际问题,寻找最优方法。
首先通过学生自己动手操作,尝试称出从9个中找出次品的方法,以及发现最佳方法。教师引领学生如果是3的倍数的数,为什么要分成3份,以及为什么而且要平均分成3份对最佳策略的成因作出推理和解释。接着用12去验证发现的规律的正确性。最后运用规律解决27、81、243个…中去找次品。让学生感悟这里其实有规律可寻。
(五)留与悬念,课余激发探索兴趣。
这里主要探索非3倍数的最佳策略并且完善找次品的规律,即不能平均分成3份的,尽量平均分成3份,保证有两份数量相同,并且只和第三组差1个,所用的次数是最少的。这是否是最优的方法。
(六)学习反思:
对全课进行输理,回顾找次品的方法和最佳策略。
五、说体会
教完以后,体会最深的就是这个难度的教材,教到什么度是合适的?对于最佳策略的成因还有没有更好的、更有说服力的相通的解释方法?教师的反馈怎么样能更有层次一些?课上下来还是觉得问题多多,但自己觉得还是在云里雾里。很希望能得到专家和同行们的帮助和指点。谢谢各位!
我说课的题目是《三角形内角和》,内容选自人教版九年义务教育七年级下册第七章第二节第一课时。
一、设计理念:
数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。
应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。
我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。
二、教材分析与处理:
三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。
三、学生分析:
处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。
四、教学目标:
1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。
2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。
3.德育目标:通过添置辅助线教学,渗透美的`思想和方法教育。
4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。
五、重难点的确立:
1.重点:三角形的内角和定理探究与证明。
2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论
六、教法、学法和教学手段:
采用“问题情境-建立模型-解释、应用与拓展”的模式展开教学。
采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。
七、教学过程设计:
(一)、创设情境,悬念引入
一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。
具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。
(二)、探索新知
1.动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。
(将拼图展示在黑板上)
2.尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。
3.证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
4.学以致用,反馈练习
(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
∴∠B+∠C=100°在△ABC中,
(2)已知:∠A=80°,∠B=52°,则∠C=?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
又∵∠A=80°∠B=52°(已知)
∴∠C=48°
(3)在△ABC中,已知∠A=80°,∠B-∠C=40°,则∠C=?
(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?
(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?
解:设∠A=x°,则∠B=3x°,∠C=5x°
由三角形内角和定理得,x+3x+5x=180
解得,x=20
∴∠A=20°∠B=60°∠C=100°
(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?
第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。
通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。
5.巩固提高,以生为本
(1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。
(2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。
本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用。能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。
6.思维拓展,开放发散
如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。
本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。
(三)、归纳总结,同化顺应
1.学生谈体会
2.教师总结,出示本节知识要点
3.教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。
(四)、作业:
1、必做题:习题3.1第10、11、12题
2、选做题:习题3.1第13、14题
(五)、板书设计
三角形内角和
学生拼图展示
已知:
求证:
证明:
开放题: