作为一位无私奉献的人民教师,时常需要编写教案,教案是教学蓝图,可以有效提高教学效率。教案应该怎么写呢?下面是整理的《圆的认识》教学设计【优秀3篇】,如果能帮助到您,小编的一切努力都是值得的。
教学目的:
1.认识圆,知道圆各部分的名称,知道同一圆内半径和直径的特征。
2.掌握圆的特征,理解在同圆内直径和半径的相互关系,能根据这种关系求圆的直径和半径。
3.初步学会用圆规画圆。
4.培养观察、分析、抽象、概括等思维能力和初步的空间观念;学会用数学知识解释生活中的实际问题。
教学重点:圆的各部分名称及各部分之间的关系
教学难点:圆的特征
教学圆规
学具准备:圆规、纸片、剪刀、彩笔、直尺
教学过程:
一、 生活中找圆,导入新课
师:对于圆,同学们一定不会感到陌生吧?生活中,你们在哪见过圆形。
师:其实,在生活中随处可见圆状物体。中秋圆月、硬币等都是圆形
师:有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?
二、 操作、探究,自主认识圆的特征
1、 师:刚才我们看了这么多的圆,你们想不想把它画下来啊?
师:平时,你们是怎么画圆的啊?
师:比较一下,你觉得哪种方法更好啊?为什么?
师:大家都觉得用圆规画方便,那么,怎么利用圆规来画圆啊?请大家自己试试,遇到问题时,再请教无声的老师,看看它能给你什么提示。
让一位同学边示范边说步骤。(显示画圆的步骤)指出在画圆时的注意点。
再让同学们多画几个圆。
2、 把自认为画的最好的圆剪下来。
师:拿出你的圆,对折一下,打开;再对折,再打开;反复几次。你发现了什么?
师在学生回答的基础上总结:这些折痕相交于一点,这一点就用圆规画圆时针尖固定的一点。我们把这一点叫做圆心。用字母O来表示。
老师在黑板上表示出圆心,让学生标出自己圆上的圆心。
3、 我们已经认识了圆心,如果我们在圆上任意取一点,连接圆心和这点,这条线段我们把它叫做半径。用字母r来表示。(边说边在圆上表示出来)
让学生在自己的圆上标示出半径,再让一位学生上黑板表示。
指点怎样量圆的半径的长度
师:在这个圆上,你能画出几条半径来?他们的长度怎样。
让学生自己探究发现,可以同桌、小组之间探讨。
老师在学生回答的基础上总结板书
4、我们再把圆拿出来,看看上面还有什么奥秘。
我们在折圆时,每条折痕都通过什么?它的两个端点在哪里?
谁来说说,这是一条怎样的折痕?
我们把这条线段叫做圆的直径,用字母d来表示。请你在你的圆上画出你这个圆的直径。一人板演,说说直径是怎么来的。
我们怎样测量它的长度呢?
我们找出了圆的直径,它是否和半径一样也有这样的规律呢?请你们自己按我们研究半径的方法研究直径。
老师在学生回答的基础上总结板书
5、 完成“练一练”第1题
展示讲评,说说怎样想的。
6、 学到这里,你对圆还想说什么吗?
可先让学生在同桌、小组之间讨论一下。再汇报,并说说是怎么想的。
根据学生的汇报,总结演示半径直径的关系。
三、 联系生活,拓展运用
1、 口答“练习二十四”第1、2题
在其中讲解半径与圆的大小的关系
2、 如果你是设计师,你会把车轮设计成什么形状?
说说你的理由。
为什么不设计成其他形状?
四、 学生自己总结
师:同学们,刚才我们一起研究了圆,现在请你闭上眼睛,回忆一下我们的学习的过程,整理一下你的学习收获。睁开眼睛,你能介绍一下你所认识的圆吗?
教后反思:
多少年来,在孩子们的心目中,在教师们的课堂里,数学一直与定理、法则、记忆、运算、冷峻、机械等联系在一起,难学难教、枯燥乏味一直成为学生学习数学的绊脚石。如何让学生在轻松和谐的环境下学习数学知识,这就成了我们教学中最为关注的问题。
圆的认识是在学生初步认识圆以后进行教学的,对于大多数学生来说,虽然已经初步认识过圆,但对于建立正确的圆的概念以及掌握圆的特征来说还是比较困难的。一开始我就从学生的生活出发,从生活中感知圆,形成圆的初步认识,画圆就顺理成章,而且比较多种方法认识到用圆规画圆的普遍性。让学生试着用圆规画圆,有困难时再看书,向书本学习。比硬性让学生看书后画圆,更尊重学生,也更富有启发性。画圆之后,让学生共同概括规律,是从感性到理性的一种提高,是十分必要的。
从感性认识到理性认识的升华,单靠学生讨论是完不成的,关键时刻,还需要教师系统的引导和讲解。因此在介绍圆各部分名称时,由老师带领着认识,当然也是在动手操作中感受圆的各部分名称。在学生操作的过程中已经积累了很多的潜在的意识,这时,老师只用稍微点拨一下,老师所要的内容学生就脱口而出。教学过程中,充分放手让学生参与知识的形成过程,让他们自己去发现、去猜想、去验证、去讨论、去合作。
当然在教学过程中我也发现了还需改进的地方,在个别环节的处理上还欠细致,前后时间的安排上也不是很好。还有,漠视了数学本身的文化背景,漠视了浸润在数学发展演变过程中的人文背景。如何兼顾知识与技能的教学,如何使我们的课堂活中有实,实中见活,这是我们每个老师值得深思的问题。
一、情景引入
出示一组生活中物体的图片,让学生欣赏。(如太阳、圆月、汽车的车轮、呼拉圈、光盘、钟面等)
1、刚才欣赏到的那些漂亮图片中的物体是什么形状?
2、在我们的生活中,就在我们的身边,还有那些地方能看到圆?
(学生衣服上的纽扣、身上的硬币、桌子里的杯子等等)
请学生用手指一指这些物体上的圆,并用手摸一摸,有什么感觉?
3、看来,在我们的大自然中、生活中圆是无处不在,今天就让我们一起来了解这个虽然不熟悉但和我们处处在一起的圆。(板书:圆的认识)
二、教学新知,初步画圆
1、刚才看了那么多的圆,说了那么多的圆。接下来请大家用你能想到的办法自己动手画一个圆。
2、请学生交流画圆的方法。如借助圆形的物体画,还有书上讲到的方法或是用圆规画)
3、通过刚才的看圆、说圆与画圆,你觉得圆与以前学过的平面图形有什么不同?
总结:以前学过的平面徒刑都是由线段围成的,圆是由曲线围成的,圆比较光滑,没有角。
4、大家介绍了很多画圆的方法。为了使我们能画出任意大小的圆来,勤劳、智慧的人们制成了专门用来画圆的工具――圆规。
三、认识圆规,掌握用圆规画圆的方法。
1、认识圆规。
让学生取出课前准备好的圆规,一起认识圆规的的构成并介绍圆规两脚的功能:圆规有两只脚,一只是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。
2、尝试画圆。
1 )你能试着用圆规画一个圆吗?学生独立画圆。
2 )刚才老师转了转,发现有些同学要么没画好,要么画出来的不圆,下面我们一起看大屏幕,注意观察如何使用圆规画圆。(使用实物投影仪,教师示范使用圆规画圆)
3 )说说,老师刚才是如何使用圆规画圆的?学生回答,教师总结并板书:两脚叉开――固定针尖――旋转成圆。
4 )学生按照这个方法再练习画一个圆,同时思考:通过两次画圆,应该注意什么?
总结:针尖要固定,不能移动;两脚间的距离保持不变;要旋转一周。
5 )练习画一个两脚之间距离是2 厘米的圆。
四、学习圆的各部分名称及特征。
1、认识圆心、半径、直径。
1 )教学圆心:刚才我们画圆时,针尖固定的这个点,我们把它叫做圆心,用字母O 来表示。找出你刚才所画的圆的圆心,并标上字母O 。同桌相互检查一下,有没有标对。
2 )教学半径:连接圆心和圆上一点的线段是半径,用字母r 表示。指导学生画一条圆的半径,并标上字母。在我们用圆规画圆时,这个半径就是指什么?(两脚之间的距离)因此圆的大小就是由圆的半径决定的。
让学生联系画一个半径是4 厘米的圆,画出一条半径,标上圆心和半径的字母。向全班展示自己的圆,看一看,自己画的、标的还有什么地方部不对。
3 )教学直径。
出示一个画有一条直径的圆,让学生观察这条线段的位置有什么特点?
总结:像这样通过圆心并且两端都在圆上的线段是直径,通常用字母d 表示。
同学们你们画的圆也有直径,请你画一条圆。
4 )闭好眼睛,回想标圆心、画半径与直径的方法。
2、练习,完成练一练的第1 题。
说说哪些不是半径或直径,为什么?
3、研究圆的特点。
我们已经认识了圆心、半径和直径,现在我们就继续来研究圆的特点。
1 )出示一张圆形的纸,你能找到它的圆心吗?(把圆对折两次)
通过对折,你还发现圆有什么地方比较特别吗?(对折后能完全重合,是轴对称图形)
2 )把你手中的圆通过:画一画、量一量、比一比、折一折,在小组内讨论交流下面问题:在同一个圆里可以画多少条半径,多少条直径?
在同一个圆里,半径的长度都相等吗?直径呢?
同一个圆的直径和半径有什么关系?
圆是轴对称图形吗?它有几条对称轴?
3 )学生汇报回答上述四个问题,教师适当引导:前面三个问题为什么要强调在同一个圆里?可以画无数条半径和直径,你是怎么知道的?你能用字母来表示半径与直径之间的关系吗?(板书:d=2r )
4 )通过刚才的讨论和交流,我们掌握了圆的特征,谁来总结一下圆的特征。
五、巩固练习。
1、练习十七的第1 题。
填写表格,并说一说半径与直径之间有什么关系?
2、练一练的第2 题。
画一个直径是5 厘米的圆,并用字母O、r、d 分别表示出它的圆心、半径和直径。
教师提问:使用圆规画一个直径是5 厘米的圆,先要确定什么?(求出半径,也就是两脚之间的距离)
3、判断题。
1 )圆有无数条对称轴。
2 )直径是半径的2 倍。
3 )画一个直径为4 厘米的圆,圆规两脚间的距离为4 厘米。
4 )圆的位置由圆心决定。
5 )两脚间的距离越大,画出的圆就越大。
六、欣赏生活中的圆
谈话:瞧,生活中,也蕴含着丰富的数学规律呢。其实,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏。
师:感觉怎么样?
师小结: 而这,不正是圆的魅力所在吗?
七、全课总结
谈话:其实短短的一节课,要想真正了解圆还不太容易。那么就让我们从今天起,走进历史,走进文化,走进圆的世界吧!
教学目标
1、使学生认识圆及各部分的名称,会用圆规画圆,理解并掌握圆心、半径与圆的位置和圆的大小的关系,掌握半径与直径的特征及关系。
2、培养学生的动手操作能力和观察、分析、综合、概括的能力及其空间观念的建立。
3、渗透辩证唯物主义的启蒙教育。
教学重点和难点
教学重点:认识圆,掌握圆的特征,了解画圆的步骤和掌握画圆的方法。
教学难点:了解画圆的步骤和掌握画圆的方法。
教学过程设计
(一)复习导入
1、请你说出下面各图形的名称。
这些都是我们学过的平面图形,它们都是由什么围成的?(都是由线段围成的。)
2、在日常生活中常见的一些物体(出示投影片),如硬币的面、有些钟表的面及有些桌子的面都是什么形的?(圆形)(用抽拉复合投题片抽去实物图形,剩下圆形。)
3、(电脑屏幕演示)一根绳子,一端固定,另一端拴一个小球,甩一周,小球留下的轨迹就是一个什么图形?(圆形)谁来指指屏幕上哪儿是圆形?
教师介绍圆上、圆内、圆外。
4、圆和学过的图形有什么相同点和不同点?(相同点:都是平面图形;不同点:圆是曲线围成的图形。)谁能说一说你周围的物体上哪里有圆?
今天,我们就来学习有关圆的知识。(板书课题:圆的认识。)
(二)学习新课
1、借助工具画圆,进一步认识圆是由一条封闭曲线围成的。
(1)用你准备的圆形物体画一个圆。
(2)说说你是怎样画的?(沿着它的周边画一圈。)请你用剪子把这个圆剪下来
2、认识圆各部分的名称及其特征。
(1)认识圆心。
①把你剪的圆对折,打开,再换个方向对折,再打开,反复折几次。折过若干次后,可以发现什么?小组讨论讨论。
②这些折痕相交于圆中心的一点,我们把圆中心的这一点叫做圆心。圆心一般用字母O表示。画圆时固定的一点,就叫做圆心。
(2)认识半径及半径的特征。
①请学生在圆上找一点。学生动手:以圆心和圆上找的一点为端点画一条线段。
师介绍:从圆心到圆上任意一点的线段叫半径,用r表示。这是一条什么样的线段?半径必须具备哪些特征?(半径是一条线段,两个端点分别在圆心和圆上任意一点。)
②请学生在规定的时间内画半径,看谁画得多。还能画吗?这说明了什么?(半径有无数条。)
③用尺子量一量这些半径,你发现了什么?(同圆或等圆半径相等。)
(3)认识直径及其特征。
①我们把圆对折时,每条折痕之间有什么共同的特点?小组讨论讨论。(折痕通过圆心,两端都在圆上。)
②我们就把这样的通过圆心且两端都在圆上的线段叫做直径。直径用字母d表示。
追问:直径必须具备哪些条件?
③想一想:直径有多少条?你是怎样发现的?让学生画出几条直径,并且量一量,你又发现了什么?(直径有无数条,同圆或等圆的直径相等。)
(4)半径与直径的关系。
①通过刚才的画一画,量一量。你除了发现半径、直径的特征外,还发现了什么?(直径等于半径的2倍,或半径等于直径的一半。)
②用字母表示上述关系:
③老师拿出一个直径是40厘米的圆,这个圆大不大?它的半径与你手中的那个圆的半径相等吗?它的半径是你手中那个圆的直径的一半吗?说明了什么?(圆的特征及直径、半径的关系必须在同一个圆或相等的圆中才存在。)
(5)练习。
(1)课本第108页的做一做:
用彩色笔标出下面各圆的半径和直径。
说明理由。
(2)课本第109页第3题:填表
(3)课本第109页第5题:
①指出下边圆里的几条线段中哪一条是直径。
②量一量这几条线段的长度,可以知道,两端都在圆上的线段,直径是最( )的一条。
③根据这个道理,我们就可以用下面的方法测量没有标出圆心的圆的直径。
出示投影片。
3、学会用圆规画圆。
(1)教师拿出一个圆规,提问:谁认识这个工具?(圆规)你知道它是干什么用的吗?
(2)学生初步尝试画圆,请你用手中的圆规试着在纸上画一个圆,你是分几步画的?可以互相讨论,互相帮助。
(3)谁来给大家说说你是怎么画的?老师按照你说的在黑板上画一个圆。
一边画,一边归纳画圆的三个步骤:
① 把圆规的两脚分开,定好两脚间的距离。圆规两脚间的距离就是什么?(半径)
② 把有针尖的一只脚固定在一点上。
提问:画圆时固定的一点就是什么?(圆心)
③ 把装有铅笔尖的一只脚旋转一周,就可以画出一个圆。
提醒学生画圆时应注意以下两点:
① 重心应放在有针尖的一脚;
② 两脚间的距离不准变。
(4)请你按照上面的步骤,在作业本上再画一个圆。
(5)用圆规画出半径为3厘米的一个圆,并用字母O,r,d分别标出它的圆心、半径和直径。
(6)看看你在纸上画的这几个圆有什么不同之处?(这几个圆的位置不同,大小也不相同。)
想一想:圆的位置是由谁决定的?圆的大小又与谁有关系?(圆的位置是由圆心决定的,圆的大小是由圆的半径决定的。)
板书:圆心决定圆的位置,半径决定圆的大小。
小结:画圆时应先确定圆心,然后按照指定的半径长度为半径来画圆。圆的大小取决于半径的长短,与圆心的位置无关。
(三)课堂总结
通过今天的学习,你都学到了哪些知识?
这些知识可以帮助我们解决许许多多实际问题:
日常生活中,为什么把车轮都要做成圆的?车轴应装在哪里?这是为什么?(圆心到圆上任意一点的距离都相等,车轴应放在圆心的位置,这样,车轮滚动时,车轴才能保持与地面一样的距离,从而使车辆行驶平稳。)
(四)布置作业