《抽屉原理》教学反思(精选13篇)

身为一名刚到岗的人民教师,课堂教学是我们的工作之一,我们可以把教学过程中的感悟记录在教学反思中,教学反思我们应该怎么写呢?

抽屉原理教学反思 1

数学课程标准指出,数学课堂教学是师生互动与发展的过程,学生是数学学习的主人,教师是课堂的组织者,引导者和合作者。本节课的教学注重为学生提供自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,学会用“抽屉原理”解决简单的实际问题,经历“数学化”的过程。

一、“创设情境——从学生熟悉的“放球”游戏开始,让学生初步体验不管怎么放,总有一盒子里至少放两个球,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,让学生利用已有的经验初步感知抽象的“抽屉原理”。

二、建立模型——本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝铅笔放入3纸个盒中,不管怎么放,总有一个纸盒里至少放进2枝铅笔”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在这一环节的教学中抓住了假设法最核心的思路就是用“有余数除法”形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。

三、解释应用_____是新课程倡导的课堂教学模式,本节课运用这一模式,设计了丰富多彩的数学活动,让学生经历“抽屉原理”的探究过程,从探究具体问题到类推得出一般结论,初步了解“抽屉原理”,再到实际生活中加以应用,找到实际问题和“抽屉原理”之间的联系,灵活地解决实际问题。让学生经历“数学化”的过程,学会思考数学问题的方法,培养学生的数学思维能力。抽屉问题”的变式很多,应用更具灵活性。本节课的练习设计注重层次,有坡度。第1、2题,学生可以利用例题中的方法迁移类推,加以解释。第3、4题学生需要经历将具体问题“数学化”的过程,有利于培养学生的数学思维能力,让学生在运用新知灵活巧妙地解决实际问题的过程中进一步体验数学的价值,感受数学的魅力,提高数学学习的兴趣。第5题是用理论的数学知识解决生活中的游戏实际问题,从而体会数学的价值。

“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于开拓学生视野,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。反思我的教学过程,有几下几点可取之处:

1、情境中激发兴趣。

兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。

2、活动中恰当引导。

教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。4根吸管放进3个纸杯的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:吸管数比纸杯数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的`方法。

3、游戏中深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。

教学永远是一门遗憾的艺术。回顾整节课我觉得在学生体验数学知识的产生过程中,老师处理得还是有点粗,应该让学生加强动手操作,将动手操作与原理紧密结合,只有样才能使学生真正地经历数学知识的产生过程,学生才能真正地学到、理解知识。

学生的数学学习过程是一个以学生已有的知识和经验为基础的主动建构的过程,数学应强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。这个游戏都是抽屉原理在生活中的运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动中学到数学知识。

抽屉原理教学反思 2

《抽屉原理》一堂好的数学课,我认为应该是原生态,充满数学味的课;应该立足课堂,立足知识点。本节课我让学生经历探究抽屉原理的过程,初步了解了抽屉原理,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。

一、情境导入,初步感知

兴趣是最好的老师。在导入新课时,我以四人一小组的形式玩抢凳子的游戏,激发学生的兴趣,初步感受至少有两位同学相同的现象,这个游戏虽简单却能真实的反映抽屉原理的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。

二、活动中恰当引导,建立模型

采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的抽屉原理即铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔。

在例2的教学中让学生借助直观操作发现,把书尽量多的平均分到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。

大量例举之后,再引导学生总结归纳这一类抽屉问题的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识抽屉原理。由于我提供的`数据比较小,为学生自主探究和自主发现抽屉原理提供了很大的空间。特别是通过学生归纳总结的规律:到底是商+余数还是商+1,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的数学证明的过程,培养了学生的推理能力和初步的逻辑能力。

三、通过练习,解释应用

适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有2张是同花色的。试一试,并说明理由。在练习中,我采取游戏的形式,请3位同学上来分别抽5张牌,然后请同学们猜猜,至少有几张牌的花色是一样的。学生兴趣盎然,达到了预期的效果。

不足之处是学生的语言表达能力还有待提高。课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中不管怎么放,总有一只抽屉里至少放进了几个苹果?对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成不管怎么放,至少有几个苹果放进了同一个抽屉中?这样对学生来说,相对显的通俗易懂。因此,在以后的课堂教学中,我要严谨准确地使用数学语言,发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用,增强提问的指向性、目的性。

《抽屉原理》教学反思 3

六年级的“数学广角”的“抽屉原理”这一内容是浅显的奥数知识范畴。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。

学生在进行验证、观察分析等一系列的数学活动,从具体到抽象的探究过程中已建立了数学模型从而不难发现规律,发现规律后及时让学生进行练习找准谁是物体、谁是抽屉。

当出示“5只鸽子飞进3个笼子里”,我仍旧要学生画图表示,但学生在反馈的时候,我就用列数据表示了,这样给学生一个参考,列数据比画图更简单点。当出示“6只鸽子飞进3个笼子里”的时候,我就要学生用列数据来表示了,又进了一个层次。当要出示“7只鸽子飞进3个笼子里”,这种情况时,我不是直接出示的,而是在6只得基础上又飞来一只,让学生猜测一下,会不会还是“总有一个笼子里至少有2只鸽子”。学生看了6只(2。2。2)这种情况后,马上就可以发现,还有一只不管怎么飞,总有一个笼子至少有3只鸽子了。通过“6只(2。2。2)”这种情况学生还发现了要看至少有几只,只要看最平均的那一组就可以了。接下来我马上提问,那你们还有什么好办法,不画图、不列数据就可以直接得出“总有一个笼子至少有几只鸽子”?学生有了6只鸽子的。数据,就发现了最好先平均分。我紧跟着让学生以“7只鸽子飞进3只笼子”为例,让学生列式。7÷3=2……1,让学生分别说说每个数字的意义。当把“5只鸽子飞进3只笼子”进行列式,5÷3=1……2,我又提问,2只是什么意思,这2只应该怎么办?学生通过举例后发现,笼子里至少有几只鸽子和算式里的商有关系,如果没余数就是“商”,如果有余数那是“商+1”而不是以前试教的时候学生出现的“商+余数”。

不过在教学的整个过程中,也难免会出现一些不当的小细节,如学生作业时发现少部分学生没有很好理解“至少有几个会放进同一个盒子里”的意思。没能正在理解“抽屉原理”。只能进行简单的求值计算,不能解释生活中的实际问题。由于此内容属于奥数内容,理解起来较难,在今后的教学中还要多了解学生,多挖掘学生的潜力,用各种不同的方式充分调动学生学习的积极性和主动性。既让学生感受到奥数知识的奥妙,又让学生感受到学习奥数知识的乐趣。

《抽屉原理》教学反思 4

一堂好的数学课,我认为应该是原生态,充满“数学味”的课;应该立足课堂,立足知识点。本节课我让学生经历探究“抽屉原理”的过程,初步了解了“抽屉原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。

一、情境导入,初步感知

兴趣是最好的老师。在导入新课时,我以四人一小组的形式玩“抢凳子”的游戏,激发学生的兴趣,初步感受至少有两位同学相同的现象,这个游戏虽简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。

二、活动中恰当引导,建立模型

采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“抽屉原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。

在例2的教学中让学生借助直观操作发现,把书尽量多的“平均分“到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。

大量例举之后,再引导学生总结归纳这一类“抽屉问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识抽屉原理。由于我提供的'数据比较小,为学生自主探究和自主发现“抽屉原理”提供了很大的空间。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。

三、通过练习,解释应用

适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有2张是同花色的。试一试,并说明理由”。在练习中,我采取游戏的形式,请3位同学上来分别抽5张牌,然后请同学们猜猜,至少有几张牌的花色是一样的。学生兴趣盎然,达到了预期的效果。

不足之处是学生的语言表达能力还有待提高。课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只抽屉里至少放进了几个苹果?”对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成“不管怎么放,至少有几个苹果放进了同一个抽屉中?”这样对学生来说,相对显的通俗易懂。因此,在以后的课堂教学中,我要严谨准确地使用数学语言,发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用,增强提问的指向性、目的性。

抽屉原理教学反思 5

“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于开拓学生视野,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。

反思我的教学过程,有几下几点可取之处:

1、情境中激发兴趣。

兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。

2、活动中恰当引导。

教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。4根吸管放进3个纸杯的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:吸管数比纸杯数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。

3、游戏中深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。

教学永远是一门遗憾的艺术。回顾整节课我觉得在学生体验数学知识的产生过程中,老师处理得还是有点粗,应该让学生加强动手操作,将动手操作与原理紧密结合,只有样才能使学生真正地经历数学知识的产生过程,学生才能真正地学到、理解知识。

抽屉原理的教学反思 6

新一轮的课程改革,把原本在奥数教材中出现的一些开发智力、开阔视野的数学思维训练内容也加入到数学教材中,以“数学广角”单元的形式出现。“抽屉原理”是六年级下册内容,应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。这对我们数学教师的教学提出了挑战。通过课堂实践,感受颇深,反思我的教学过程,有几下几点可取之处:

1、创设情境,从学生熟悉的素材开始激发兴趣,

兴趣是最好的老师。课前猜测扑克牌的花色,简单却能真实的反映“抽屉原理”的本质。通过猜测,一下就抓住学生的。注意力,让学生觉得这节课要探究的问题,好玩又有意义。

2、建立模型,本节课充分放手,让学生自主思考,恰当引导

教师是学生的合作者,引导者。在活动设计中,我注重学生经历知识产生、形成的过程。4枝铅笔放进3个文具盒的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:铅笔数比文具盒多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。

3、解释应用,深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。

教学永远是一门遗憾的艺术。回顾整节课我觉得学生对简单的“抽屉原理”本质理解的很透彻,每个同学都能够用简洁的语言和算式表达自己的想法。

抽屉原理的教学反思 7

本课是小学六年级数学广角的内容,初看教学内容,我甚至没有看懂所学的内容与我们现在学习的知识有多大联系,不知道这部分知识能够解决什么问题,而且这部分知识又有一定的难度。但我是一个喜欢冒险与挑战的人,觉得越是有难度的课,如何能让学生理解并掌握,专研这种课对于我个人来说是非常有价值的。因此,我毅然决定的选择了这节课。

细细的专研教材,终于有了比较清晰的思路,明确了教学的目标。

本堂课着眼于学生数学思维的发展,通过猜测、验证、观察、分析等活动,建立数学模型,渗透数学思想。

数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。

一堂好的数学课,我认为应该是原生态,充满“数学味”的课;应该立足课堂,立足知识点。“创设情境---建立模型---解释应用”是新课程所倡导的教学模式。本节课运用这一模式,创设了一些活动,让学生通过活动,产生兴趣,让学生经历探究“抽屉原理”的过程,初步了解了“抽屉原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的`数学思维。

课后反思本节课,我觉得,有以下几方面与大家共勉。

一、情境导入“理性化”

情境导入,目的是让学生很快的排除外界及内心因素的干扰而进入教学内容,营造一个教学情境,帮助学生在广泛的文化情境中学习探索,导入新课的目的是要引起学生在思想上产生学习新知识的愿望,产生一种需要认识和学习的心理。我以“五人座四把椅子,总有两人坐一把椅子”的游戏导入新课,激发学生的兴趣,初步感受至少有两位同学相同的现象,激发学习新知的欲望。

二、教学过程“简单化”

理解“抽屉原理”对于学生来说有着一定的难度,在教学例题:把5个苹果放进2个抽屉中,证明,不管怎么放,总有一个抽屉里至少放进了3个苹果。我是这样教学的:首先从简单的情况入手研究(把3个苹果放进2个抽屉,可以这么放?),通过简单的教学,不仅为学生学习例题铺垫,同时又可以渗透解决复杂的问题可以将问题简单化或者已经学过的知识的这一种思想。

三、数学语言“精简化”

教学,是一门学问,更是一门艺术。特别是数学这一门学科,课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只抽屉里至少放进了几个苹果?”对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成“不管怎么放,至少有几个苹果放进了同一个抽屉中?”这样对学生来说,相对显的通俗易懂。因此,课堂教学中,教师应严谨准确地使用数学语言,善于发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用。

四、练习设计“多样化”

练习,是学生在老师的指导下,巩固和运用知识,形成技能,技巧并提高能力的一种教学方法。要让全体学生计算达到熟练,思维得到发展,就必须加强针对性的练习。但是,如果在教学中,单一的进行练习,不仅学生的解题能力不容易提高,使学生产生乏味、枯燥的感觉,而且会使学生的思维呆板。由此影响学生的听课效率和练习效果。因此,本课我利用多媒体适当设计形式多样化的练习,可以引起并保持学生的练习兴趣,而且巩固了新知。

抽屉原理教学反思 8

“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于开拓学生视野,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。反思我的教学过程,有几下几点可取之处:

1、情境中激发兴趣。

兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的。注意力,让学生觉得这节课要探究的问题,好玩又有意义。

2、活动中恰当引导。

教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。4枝铅笔放进3个文具盒的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:铅笔数比文具盒数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。

3、游戏中深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。

教学永远是一门遗憾的艺术。练习的梯度考虑不周全。练习题3的难度太大,应在学习例3后再出现。另外,课前的游戏简短有效,在结束新课前,用“抽屉原理”来解释,会有一种前后呼应的整体性,但由于时间的安排,一直到课后,再没提及,有点遗憾。

抽屉原理教学反思 9

数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。

本节课的教学突出体现以下两个特点:

一、游戏导入,激发兴趣。

从学生熟悉的“抢椅子”游戏开始,让学生体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是生活中存在着的一种现象,激发学生的'学习兴趣。

二、注重“说理”活动,培养学生逻辑能力。

1、在教学例1时(把4枝铅笔放进3个文具盒中。),我大胆放手让学生通过“动手放一放、同桌互相说一说”(在汇报的过程中,提醒学生只需解决存在的问题就可以了。)

2、补充习题,使学生逐步学会运用一般性的数学方法来思考问题。

A、将5枝铅笔放进4个文具盒里。

B、将6枝铅笔放进5个文具盒里。

C、将20枝铅笔放进19个文具盒里。

D、将100枝铅笔放进99个文具盒里。……

总有一个文具盒里至少放进()枝铅笔

铅笔数是文具盒数的1倍多1

铅笔数÷文具盒数=1……1

至少数:1+1=2

如果是5枝铅笔放到3个文具盒里,总有一个文具盒至少放进几枝铅笔?

5÷3=1……2

至少数=1+1

抽屉原理教学反思 10

《抽屉原理》是人教版六年级下册数学广角中的内容,这部分内容属于奥数知识范畴,首次被编入新课改教材,它的教学就是通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。当我第一次接触到《抽屉原理》时,我很困惑:什么是抽屉原理?这么难的内容学生能理解吗?我的印象里《抽屉原理》是非常坚深难懂的(好像在上师范的时候学过,当时我都没学懂)。时隔两年,再次教学《抽屉原理》心里还是觉得没底,不知能否讲清楚、讲明白。为了上好这一内容,我搜集学习了很多资料,查阅了多篇教案,在“前辈”们的经验上,与本组成员相互探讨、研究,终于使我对“抽屉原理”有了新的认识,也终于理出了头绪。抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。通过本部分内容的教学,我有以下几点体会:

一、重视集体研讨,集体的智慧是无穷的。

以前上这节课时,总是按照自己的理解来给学生讲,有时会拿一些名师的优秀教案生搬硬套,结果却总是讲着讲着不知道该怎么讲了,有时连自己也都被搅迷糊了,教学效果可想而知。而今年上课之前,我们几位老师提前就开始讨论这节课,红晓老师还拿出了以前做的课件,讲了讲自己对这节课的理解,以及难点的突破方法,通过我们集体的研讨,原本觉得很难理解的内容也变得简单了,上课之前能够做到胸有成竹,就不愁讲不好这节课了。

二、要根(转载于:抽屉原理教学反思)据学生的实际进行教学设计

以前上这节课时,我总以“学生的生日”为话题引入新课,学生们兴趣也比较高,这次上课,我依旧 课后反思一下,以前的班级最多42人,当老师猜测“我们班42人中,至少有4个人的生日在同一个月”之后,学生们都不相信,于是就很有兴趣地要进行验证。由于人数少,比较好验证,而且基本上会出现1月生日的只有一、两个人,2月同样如此,这样学生就会面露得意之色,说老师猜的不对,直到3、4月或5、6月才发现真的有4个或4个以上的人在同一个月生日,这时还会有些学生不甘心,说有5个人在某一月生日,你说的是4人。这也正好是我想要的效果,我就让学生自己去辩析,以此让学生理解“至少”“同一个月”的含义,我下面的新课做好铺垫。而现在的班级有80个同学,首先,这个问题一出,验证起来就有点难以掌控,刚说个1月生日的请站起来,其余的学生马上半站式地扭头去数,结果数了好几遍才数清人数。其次,也可能是人多的缘故,也可能是凑巧,正好有8个人在1月生日,2月生日的也正好有7个人,一下子就验证了猜测,感觉没有吊足学生的“胃口”,开场搞到气氛平平的,没有自己预想的那种效果,感觉不是太好。因此,在今后的教学中,不能只停留在以前的经验上原地踏步,要结合新的学生,认真分析学情,从而设计出合适的课堂教学。

三、数学教学,不仅要重结果,更要重视学生获取知识的过程。

抽取游戏是抽屉原理的一个延伸,其实也是它的一个逆思考。这里主要是要让学生理解抽取问题中的一些基本原理,学会从“最不利”的情况来思考问题。教学之前,我们组的段老师从网上下载了一个比较合适的课件,其实课件做得很好的,重难点都比较突出。但我在上课时并没有完全用那个课件,因为课件中总结的公式我其实也并不是完全理解,我总觉得,这部分知识主要是教给学生一种思考方法,以培养学生的思维能力为主,只要学生能正确说出答案,并理解其中的道理就可以了,不必要非得总结一个公式让学生来死搬硬套。于是在教学中,我就通过实践操作先让学生看到:从“红、黄各10个小球中需要至少拿出3个才能保证一定有两个是同色的”,然后鼓励学生去讲其中的道理,当学生讲到“最差的情况就是拿出的两个完全不同,再拿一个不是红色就是黄色,就和其中一个是同色的了”。我简直惊讶极了,这一个个小脑瓜中都是怎么想的呀,我想了好久才想明白的问题,他们竟然这么快就想通了。接下来,我通过变换不同的条件和问题,让学生分别去讲其中的道理,结果是,我的题目刚一出来,学生们就迫不及待地说出了答案。这时,一些爱表现的学生就慌着展示自己的简便算法了,他们不仅说到了课件中将要出现的计算方法,也说出了好几种不同的算法,真是让我刮目相看。看来,当学生真正理解某一知识的时候,他们的创造力也是很惊人的!应该说比我们要强!

静下心来想,在课堂教学中,学生是课堂的主人,是学习的主体,并不意味教师被学生“牵着鼻子走”。教师要充当好课堂的组织者

和引导者,就得站得更高,不是只着眼于教学流程的设计,必须充分解读文本。从《新课标》的角度解读文本,掌握标准;从编者的角度解读文本,了解编排的意图;从学生的角度解读文本,做到充分的预设。这样吃透教材,做到心中有数,不管在教学中碰到什么情况,都能围绕教学内容灵活机动处理,将被动化为主动。

抽屉原理教学反思 11

抽屉原理属于浅显的奥数知识范畴,首次被编入新课改教材。初看教材,我甚至没有看懂教材上所讲的内容与我们现在的数学知识有多大的联系。不知道学这部分知识又能解决什么问题。我的心里一点底也没有。通过看教材,我发现这部分知识还真挺有意思。但讲起来却不是很容易。

于是我认真钻研了教材、课标与教学参考,终于有了清晰的思路。我相信只要认真钻研,精心准备,做到胸有成竹,课堂上就能游刃有余,就能上好这节课。

正如我所想,这节课我通过游戏引入、学生操作、小组讨论等方式,比较顺利的完成了教学任务。

教学是一门没有缺憾的艺术,我的感觉和刘改荣老师一样,总觉得这堂课不够生动,该有的高潮没有掀起。大概是我急于求成,课堂上引导的太多,限制了孩子们的发挥,再加上有老师听课,学生有点拘谨吧。

总之,本节学生的学习效果还不错,全班学生针对这类问题都能快速做出正确分析与判断。我也算圆满完成了这节课的`学习目标,实现了三维目标的有机整合。

我觉得,有时敢于尝试,就会得到意想不到的收获,大胆的迈出去,才有成功的机会。

抽屉原理教学反思 12

一、情境导入,初步感知

兴趣是最好的老师。在导入新课时,我以四人一小组的形式玩抢凳子的游戏,激发学生的兴趣,初步感受至少有两位同学相同的现象,这个游戏虽简单却能真实的反映抽屉原理的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。

二、活动中恰当引导,建立模型

采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的抽屉原理即铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔。

在例2的教学中让学生借助直观操作发现,把书尽量多的平均分到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。

大量例举之后,再引导学生总结归纳这一类抽屉问题的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识抽屉原理。由于我提供的数据比较小,为学生自主探究和自主发现抽屉原理提供了很大的空间。特别是通过学生归纳总结的规律:到底是商+余数还是商+1,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的数学证明的过程,培养了学生的推理能力和初步的逻辑能力。

三、通过练习,解释应用

适当设计形式多样化的练习,可以引起并保持学生的练习兴趣。如从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有2张是同花色的。试一试,并说明理由。在练习中,我采取游戏的形式,请3位同学上来分别抽5张牌,然后请同学们猜猜,至少有几张牌的花色是一样的。学生兴趣盎然,达到了预期的效果。

不足之处是学生的语言表达能力还有待提高。课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中不管怎么放,总有一只抽屉里至少放进了几个苹果?对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成不管怎么放,至少有几个苹果放进了同一个抽屉中?这样对学生来说,相对显的通俗易懂。因此,在以后的课堂教学中,我要严谨准确地使用数学语言,发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用,增强提问的指向性、目的性。

抽屉原理教学反思 13

作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带抽屉原理是人教版数学六年级下册的知识。作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的。建模过程应该以活动为载体,带动学生的思考。在充分活动的基础上理解总有与至少的含义。如进行坐椅子游戏,5个人坐在4把椅子上,不管怎样坐,总有一把椅子上至少有2个人。

又如,4个桃子放在3个盘子里,不管怎样放总有一个盘子里至少有2个桃子。3支笔放进2个笔筒里,不管怎样放,总有一个笔筒里至少有2支笔。多次操作,分一分,描一描,说一说等活动体会总有与至少的含义,这些知识有只可意会不可言传的感觉。在建模后在分析具体问题时,先让学生说说把什么放在什么地方,体会待分物体与抽屉的关系,这样才能更好的找到至少数。

一键复制全文保存为WORD
相关文章