在不断进步的时代,课堂教学是重要的任务之一,反思指回头、反过来思考的意思。那要怎么写好反思呢?
虽然课已经上完,同课异构的教研活动也已经结束,但是我明白我们的教学工作并没有结束,我不能停下前进的脚步,是就应静下心来,好好地自我反思、总结的时候了。
一、对教材的分析要全面、到位,把握内在联系,分清主次轻重。
从一开始对教材的理解,就让我对本课的教学倍感压力,总有个疑惑:有部分学生已经能理解并解释应用假设法来解决问题了,为什么北师大版的教材却不同人教版的教材一样,提倡教给学生运用假设法、画图法、金鸡独立法、代数法、列表法……等多种方法解题,甚至是要求教师除了列表法以外的方法都不宜补充教学,以免干扰学生思绪。难道教学不就应从学生已有的知识经验水平出发?学生已经掌握的我们还要给硬逼回原点,从零开始吗?
这一连串的疑惑多亏了学校领导和老师们的一语道破,真是一语惊醒梦中人啊!让我重新细细地、全面地解读教材,才明白其实假设法、画图法等与列表法并不是孤立的、互不相干的几部分,而恰恰相反的,假设法、画图法与列表法一样都是在应用假设的数学思想,它们是相互关联的。教材将这一经典、传统的题目“鸡兔同笼”选编为“尝试与猜测”一节,其目的是借助“鸡兔同笼”这个问题作为载体,让学生初步获得一些数学活动的经验,引导学生对一些日常生活中的现象的观察与思考,从而发现一些特殊的规律,体会解决问题的一般策略――列表,即逐一列表法、跳跃列表法和取中列表法。
二、注重思维潜力的培养和数学思想的渗透。
让学生在参与观察、猜想、验证、综合实践等数学活动中,发展合情推理和演绎推理潜力。用数学语言清晰地表达自己的想法是培养学生思维潜力的重要途径。从课初的随意猜想到表格中的有序猜想,从一般验证到表格中数据变化规律的发现,从列表法很快自然联想到画图法、假设法,学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维潜力也随之得到了极大的提升。
教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”、“画图法”等解决问题,渗透了假设的思想和方法。这些对于学生而言,无疑奠定了可持续发展的坚实基础。
三、注重数学文化的传承。
鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一向流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,教师把“数学文化”和《孙子算经》及其中关于鸡兔同笼问题的原题,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味,也让“数学味”萦绕课堂,贯穿课堂始终。
四、真正让学生亲身经历列表、尝试和不断调整的过程,让不同的学生学有不同的数学。
由于学生原有认知水平的不同,存在较大的差异。所以,在同样的列表中,学生的认知水平也有必须的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出的方法有序且不遗漏。再引导学生从上往下看、从下往上看、从左往右看发现规律,体会鸡兔只数变化之间的置换关系。等待学生充分掌握规律,已经跃跃欲试了,教师再指引学生运用自己发现的变化规律在表格中调整验证过程,进行二次调整,快一点找到答案?学生不但能够应用跳跃列表法、取中列表法,来调整过程,而且部分学生已能把跳跃和取中的方法相结合起来列表解决问题。最后引导学生对解题技巧进行归纳与总结:做任何题目的时候,都要先认真思考、分析,根据题目的条件,选取适当的方法,找到解决问题的小窍门!
这样学生在具体的解决问题过程中,他们根据自己的经验,逐步探索不同的方法,找到解决问题的策略;在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。本来只要求从3道题中任选1道题进行解答,没想到一会功夫,已经一大部分学生把3道题都解答完了,就因为他们在自己亲身经历的调整过程中学会了将取中和跳跃的方法相结合,所以速度之快。这同时也体现了不同的学生在同一节课中都有不同程度的提高,不同的学生学有不同的数学。
五、教师要走进课堂,走进学生的心里,注意捕捉并利用课堂生成的新资源。
这是我教学这一课之前感到有困难的,也是我教学时做得不够到位的地方。比如:学生猜出鸡兔各几只后,有个别学生就开始用口算进行验证。此时,教师的引导让学生感觉需要列表的必要性不够明确。
本节课通过创设生动的问题情境,让学生投入到解决问题的实践活动中去,自己探究,经历数学学习的全过程,从而体会假设的数学思想的应用与解决问题的`关系。在学习中我注重鼓励每一个学生参与学习过程,用适合他们的方法解决问题,同时也体验解决问题的不同方法。
“鸡兔同笼”以前是属于奥数类型的题目,如今编入教材,对学生尤其是基础不好的学生来说有一定的难度,特别是使用假设法解答时,学生理解起来很难,为此我先采用列表法来帮助学生理解,把抽象的知识直观化,然后再引入假设法。对于理解能力较差的学生来说,列表法数据较大,假设法又不易理解,所以我也将抬脚法引入课堂,希望能够为学生提供解决问题的多种思路。
对于本节课的学习,部分学生已经在课外辅导班学习过了,课堂上这些学生的积极性很高,也能够深刻理解鸡兔同笼的意义,但这就造成了个别程度较差的学生偷懒现象,所以在接下来的练习课上要更多的关注那些做题速度较慢、思维不清晰的学生。
在实际操作过程中,这也是本课时最大的遗憾,不是练习的设计有问题,而是课堂教学内容太多,以致教学时间不足,使得练习的时间没能得到保证。
一、注重解题策略的多样
教学中,我引导学生从多角度思考问题,运用了画图、列表、假设、代数等多种方法解决问题,促进学生数学思维能力的发展。
二、注重数学思想的渗透
我在引导学生运用多种方法解决问题所采用的策略中,有意识的渗透了数学思想。如:将“鸡兔同笼”的原题数据改小中渗透了化繁为简思想,“列表”的策略中便渗透了变化和函数思想,“算术法”的策略中渗透了假设思想,“方程”的策略中渗透了代数思想等等。
三、注重学生思维的培养
在导学案中,我让学生依次经历画图、列表、假设、方程这四种解决问题的方法,并注重了这些方法之间的联系和层次,有意识的对学生进行了思维培养。
四、注重数学文化的培养
教学中,我把《孙子算经》的原题和特殊解法搬到课堂中来,尤其是后面把腿的只数减少一半后,这都是一种数学文化在现代课堂当中的一种深刻地体现!更使他们感到学数学不是枯燥乏味的,而是风趣幽默、有情有趣的一门学科。
“鸡兔同笼”是六年级上册数学广角的资料。在这节课当中,我主要借助教材上的列表法同时结合引导学生画图的方法,再配合假设法。充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。
本节课的重点放在了“尝试探究”这一部分,使学生充分感受数学的思维过程,培养学生的逻辑推理潜力。透过画图的过程中充分调动了学生的用心性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。应用练习是一个提升的过程,让学生回顾研究鸡兔同笼问题的解决方法的过程,选取适宜的方法来解决新的问题,在汇报时让学生说说理由。用哪种方法适宜?为什么?应用练习的设计,这样都能使学生巩固了解决鸡兔同笼问题的方法,同时解决问题的潜力也得以进一步的提升。课堂教学后,我进行了以下反思:
1、透过向学生带给了现实、搞笑、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生能够应用作图法、列表法、假设法、列方程解决问题。
(1)师生共同经历了三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。
(2)假设法教学与画图结合分析的方法上的突破,到达好的效果。
(3)列方程解决问题做为后进生的学习良方,也是解决难题的途径,也值得老师重点关注与突破。
2、遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生带给探索和交流的空间,鼓励学生自主探索与合作交流。透过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的'应用与解决数学问题的关系。透过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的潜力。图形与鸡兔同笼的有效结合,让知识“
3、在学习中注意独立思考与小组合作相结合,鼓励每个学生参与学习过程,不同学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在学生独立思考2—3分钟后再强调学生之间交流,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法,使学生共同学习,共同进步,共同提高,提高合作学习的有效性。
总的来说,教学有效性更注重把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。这堂课研究的方法多,容量大,有的地方只是蜻蜓点水,部分学生理解上还有点问题,我想将在练习课中进一步完善。一句话:尊重学生的思维水平。
鸡兔同笼教学反思
1、数学教学要通过知识的学习让学生得到思维锻炼,“鸡兔同笼”问题就属于这类问题。在生活中,“鸡兔同笼”的现象很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数它们的脚呢,直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,“鸡兔同笼”问题,是让我们在鸡、兔脚数的变化中,寻找不变的规律,并采用有效的手段来解决数学问题。
2、学生是学习的主人,在学习过程中尽可能多地为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课中,主要通过创设现实情境,让学生投入到解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。
3、由于学生原有的认知背景不同,他们对解答此类问题时存在较大的差异。在教学的过程中,不能提出统一要求,要允许不同的学生采用不同的解题方法。在本节,师生共同经历了列表法、假设法等,最后比较哪种算法比较好。这样教学既提高了学生探究能力和小组合作能力,又体现了算法多样化,也让不同的学生在同一节课中都有不同程度的提高。
鸡兔同笼问题是我国民间�
最早出现在《孙子算经》中。北师大版五年级上册教材对于这个问题的解题设计,是把列表法作为主要的解题法,但教参中又提到了画图法、假设法、方程法等,提倡算法的多样化,明显要求老师在教学中,这几种方法都要提到。经过对教材的解读和同科组几位老师商讨,觉得这几种方法归根到底都是假设法,画图法和假设法更是同出一辙,一个是直观的假设,另一个是把直观的假设抽象成数字符号表示而已。考虑到方程法学生不会解,所以决定以教材为重点,先用一个课时上列表法,再用一个课时上画图法和假设法,用两个课时上完。如果过中有学生用到方程解的,也给予肯定。
上课之前,我们都觉得学生对于画图法和假设法应该较为容易理解,通过教学后发现,学生对于列表法,特别是对逐一列表法,学生们普遍都能理解掌握,对于跳跃式列表法、取中列表法也有大部份的学生能够灵活运用。反而是假设法,虽然有画图法辅助理解,相差的腿数,为什么要除以鸡兔的腿数差,学生还是难以理解。授完课之后,我们还发现了另外两个更为严重的问题:一是学生在学了假设法后,觉得假设法比列表法的书写来的简便,更喜欢用假设法,而他们又没能理解透彻这种方法,常常用相差的腿数除以鸡腿数或兔腿数,导致解题错误。二是学生虽然懂得用列表法解决真正的鸡兔同笼问题,一但换成另一个内容的类似鸡兔同笼的问题时,学生却不懂填表头。
如:(1)新星小学“环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男女同学各有几个?(2)小白兔拔萝卜,雨天一天拔12个,晴天一天拔20个,小白兔共拔了112个萝卜,平均每天拔14个,小白兔拔萝卜有几天是雨天几天是晴天?
出现这些问题,我想这也可能是我在设计教案时并没有准确考虑到学生自身的实际认知水平,本课内容安排过多。如果下次再次教学鸡兔同笼,我想我会把列表法与表头的填写方法作为重点来上,其他的方法根据学生的认知水平适当处理。
本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。让学生获得亲自参与探究学习的积极体验。
按照我对教材的理解,并遵照《新课程标准》中:在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流的精神。首先以观察鸡兔的图片入手,让同学们发现动物身上隐藏着许多的数学问题,然后开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的`重点;接着引出《孙子算经》中的一个数据比较大的鸡兔同笼问题,先让学生用自己刚刚学到的方法进行解决,然后再激发学生“了解古人的解题方法”欲望,让学生自主的去阅读书中的一段阅读资料,了解古人的解题方法,并试着解释。老师再利用多媒体课件帮助学生理解古人这种独到的解题方法————抬腿法。从而让学生受到古文化的熏陶,感受道古人的了不起。最后就是利用法学到的方法解决生活中类似的“鸡兔同笼”问题,让学生真正感受到数学与生活密不可分,数学知识来源与生活,同样也运用于生活。
“鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材第十一册中。对学生尤其是基础不好的学生来说有一定的难度,因此,我认为必须让学生经历从多种角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的经验,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法,并灵活运用该方法解决生活中的类似“鸡兔同笼”问题。特别是用假设法解答,学生理解起来很难,为此我用画图的方法来帮助学生理解,先画8个圆圈代表8只鸡,每只鸡画2只脚,这样就有16只脚,缺了10只脚,再把其中的几只鸡每只添上2只脚就变成了兔子,所以有5只兔子。这样把抽象的知识直观化了,学生很快理解了这种方法。
我注重从以下几个方面进行数学文化的渗透:
一、介绍中国古代的数学成就。
中国有着历史悠久、成就辉煌的数学文化,出现了许多伟大的数学家和经典的数学名著。结合本节课的教学内容,教师通过向学生介绍记载“鸡兔同笼”问题的数学名著《孙子算经》,介绍古人解决鸡兔同笼问题的巧妙方法,使学生了解数学知识丰富的历史渊源,感受古人的聪明智慧,增强民族的自豪感。
二、渗透解决问题的思想方法。
数学思想方法是数学文化的精髓,教师有意识地向学生渗透一些基本的数学思想方法,可以加深学生对数学知识的理解,提高学生的思维品质。结合本节课的数学内容,教师适当渗透了化繁为简、猜测验证、假设、数形结合等思想方法,其目的不仅是让学生掌握好本节课的基础知识和基本技能,更重要的让学生了解一些解决问题的策略,提高解决问题的能力。
三、注重数学模型的实际应用。
在数学教学中,从学生已有的生活经验出发,让学生亲身经历讲实际问题抽象成数学模型并进行解释与应用的过程,能激发学生的兴趣,让他们全身心地投入学习。结合本节课的教学内容,教师安排了大量与“鸡兔同笼”有着类似数量关系的问题,让学生会用数学的思维方式去观察、分析周围世界,并且在这现实的、有意义的,富有挑战性的探索活动中,加深对数学知识的理解与掌握,感受到数学的真谛与价值。
但在平时的教学中也存在值得我们进一步思考的问题:
1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;
2、要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标;
3、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。
《鸡兔同笼》问题有一定的难度,课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。
《鸡兔同笼》本来就是很抽象的课程,估计学习《鸡兔同笼》可能会有一定的难度。所以也只能按照课本那样的列表法,再配合假设法,充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路:
出示例题:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,问鸡和兔各有几只?
师生共同经历了列表方法后,问:能用图形来表示鸡兔头和腿之间的关系吗?
引导学生画图的方法去试:先画8个圆圈表示8个头,再在每个鸡下面画两条腿,8只鸡有16条腿,还多出10条腿,把剩下的10条腿要给其中的几只鸡添上呢?(5只鸡分别添2条腿)。这5只就是兔子,另外的3只就是鸡。这时候有学生问能把动物都看成是兔吗?在师生们的共同操作下再把腿依次减少,也得到了同样的结论。
虽然这只是一个简单操作活动,但是,在画图的过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。
师生共同经历了二种不同的方法:列表法、假设法,让学生自己选择喜欢的方法解决《孙子算经》中的问题。学生很自然地选择假设法,自觉进行方法最优化。因为毕竟鸡兔同笼问题比较难。但教学中也存在着很多问题,反思如下:
1、学生汇报时,可以多找学生汇报,其他学生可能会听得更明白。
2、培养学生质疑能力,听不明白的及时向别人提问,及时解决不懂的问题。
3、学生比较喜欢假设法,但发现推理时思路不清,容易出错,如果及时指导学生写推导过程就会较好地避免问题的出现。
本节课,在整个课堂中,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。
但在平时的教学中也存在值得我们进一步思考的问题:
1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等。
2、要想大面积提高课堂教学效益,必须在课堂中注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标。
3、有意义的练习及作业的设计要考虑有利于知识点的落实,要能激发学生的兴趣,还要考虑练习内容的层次性,手段的灵活性,逐步培养学生的创新能力和动手能力。
昨晚在家里与峰讨论,明天俞老师上“鸡图同笼”会怎样上呢?因为鸡兔同笼在五年级都已经学了,学生也会解决一些变式的题目,难道他会让学生解一些更难的题目,那么又会怎样来组织材料呢?是不是会解决各种方法之间的联系?。.。.带着很多的猜想走进了今天俞老师的课堂。(很高兴猜中了一点:解决各种方法之间的联系,但是万万没有想到俞老师会用这样的组织方式,从一至六年级学生的解题方法来贯穿整节课),俞老师那幽默风趣的语言、孩子们那精彩的表现赢来了台下听课老师的阵阵掌声。整节课下来,使我体会到了“站在讲台上我就是数学”这句话的真正含义!
一、导入
1、出示一个鸡兔同笼的简单题目(鸡兔头有7个,有脚22只,问鸡兔各有几只?)
t了解学情
2、一、二、三四、五六、七八年级的学生分别怎样来做这个题目。
学生独立尝试
3、s1:二年级用凑数的方法。五六年级用假设的方法。
s2:五六年级还可以用方程解。
4、t:三种方法了,一年级可以用什么方法?
s:用画的方法。
t:用一年级的方法画。(先鸡头再变成兔头)
t:七八年级是怎样解决的'呢?
s:1只鸡和1只兔为1组22除以6(用抬脚法)t:归入到三、年级
二、讨论各种方法的异
1、面对这种方法你有什么想法?
t:�
为什么一年级会做更难的呢?
s:因为一二年级的做法思路简单。
t:各种方法的主要特征?
s:第一种方法的特征是画出来
s:第二种方法的特征是凑出来
s:第三种方法的特征是算出来
s:第四种方法的特征是解出来
三、分类
1、t:四种方法分成两类,� .。在耐心的等待中,学生的思维又进入了积极的状态中)
s2:一、四为一种、二三为一种。
小组讨论。画的一类。
s3:一、三为一种,
一、三都是假设的。
二、四都是设鸡为1只,兔为7-1,同方程的解。
t:三种分类,还有吗?
s:一、二三为一种,四为一种,根据有没有*
s:其实怎么分都可以,他们都有共同点。
t:四种方法一样在哪里?
s:都是用假设的方法。(第五种)
四、优化分类
t:哪一种分类方法最有智慧?
s:一二为一类、三、四为一�
三是一的简单化 二是四的形象化
一是三的形象化 四是二的简单化
t:三四是一二的升级版。
t:如果一个小朋友学不会,你怎么教他?
五、小结
面对这份材料,你有什么想法?
数学有共同点,简单带来复杂,复杂的带来简单。
生:数学是一步一步的演化而来的。
t:我们不学猴子摘了玉米扔玉米,摘了桃子扔桃子。.。从懵懵懂懂的一年级到六年级,学了不要扔。
“鸡兔同笼”问题是用假设法解题的典型问题,对于有些学生比较难以理解,同时不同的学生喜欢的方法也可能有所不同,所以本设计强调让学生多角度地思考,尝试用不同的方法去解决“鸡兔同笼”问题,并且在解决问题中,让学生经历“猜测——列表——假设”的过程,培养学生的逻辑思维能力。这节课注重了以下几点:
一、注重通过生生互动和人境互动帮助理解解决问题的思路
“鸡兔同笼”问题属于一类较难理解的应用题,有些学生通过独立思考、探究并不一定能找出正确方法和答案,这就需要借助外在的帮助,学生与学生之间的互动让学生接受起来更容易、更方便,让会的孩子去帮助不会的孩子学会不但是一个知识的传输过程,也是一个思维碰撞、情感交流的过程,不会的孩子通过帮助不但学会了新知识,还学会了其他学生良好的思维习惯,增进了他们的友谊。人境互动在本节课中也起到了相当重要作用,比如说学生想象兔子变成鸡的场景、用手比划模仿鸡和兔、在脑海中形成印象、画图理解,让学生身临其境,体验、感受了鸡和兔的脚具体是怎么变化的,为什么会那样变化,为理解假设法打下了坚实基础。
二、注重数学思想的渗透和逻辑推理能力的培养。
本设计通过多维互动突出了用假设法解决“鸡兔同笼”问题,同时还渗透了化繁为简、猜测、尝试、列表法、数形结合等数学思想,给数学课堂带来了生机和活力,让学生感受到数学的无穷奥妙和变幻万千,同时通过对解题思路的逐步引导,让学生学会推理,学生思维能力得到了提升。
三、注重数学文化的传承。
“鸡兔同笼”问题是《孙子算经》中一道数学名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,教师把“数学文化”和《孙子算经》及其中关于鸡兔同笼问题的原题,用课件生动地呈现于课堂,极大地激发和调动了学生的探究兴趣,同时也传承和弘扬了经典的数学文化,让学生感受到中国古代数学的`先进,增强了民族自豪感。
经过几次的磨课和评讲,我也感受到自己在授课中的一些不足,比如说课堂应变能力需要提高,细节上的处理做的不够等等,这些都需要不断努力改进。在这几个星期的时间里,从开始到结束,都是师校长、贾书记、张主任、唐主任和师父朱老师等领导和优秀教师在不断帮我修改、观课、评课、磨课,正是有了她们的悉心指导和帮助才有了我今天的进步,她们认真、细心、专注的态度让我由衷敬佩,这节课给我最大的收获就是端正态度,认真踏实、一丝不苟地去准备并上好每节课。
“鸡兔同笼”问题是我国民间� 本节课主要是借助这个题材,培养学生从多角度思考,运用多种方法解决问题的能力;重在研究解决问题的方法和策略上,并在合作交流过程中,积累解决问题的经验,掌握方法,并灵活运用这些知识解决生活中类似“鸡兔同笼”的问题。所以在设计教学过程时我力求渗透以下几点:
一、在放手探究中体会解题策略
学生刚刚接触“鸡兔同笼”问题时,要列式计算往往感到困难,所以我设计了几种由浅入深的方案,先通过儿歌引入算出一只兔和一只鸡的头数和脚数,再逐步增加鸡和兔的只数,学生用自己的生活经验可以口算出总头数和总脚数;然后出示已知头数和脚数求鸡和兔的只数。在放手探究时提供画图、列表、倒推、解方程等等方法,数形结合使学生理解并运用这些方法解决问题。这样不仅关注解决问题的结果,更关注知识的生成;不仅关注优秀学生,更关注全体学生的全面发展。从学习效果来看,确实让全体学生在数学上得到了不同的发展:因为层次不同的孩子选择了适合自己的不同方法,都得到了正确答案。
二、在策略多样化中体验最优方法
学生尝试应用画图法、列表法、假设法和代数法等来解决问题,他们在探究的过程中,根据自己的经验,尝试不同的方法,找到了解决问题的策略。但是让学生认识、理解、运用假设法是这节课的教学重点,也是教学难点。特别是假设全是鸡为什么求出来会是兔,学生很难弄懂。为此,在新课前我用兔子起立学鸡的故事进行铺垫,让学生明确,把一只兔当成了鸡就会少2只脚,用总共少的只数除以每只少的只数就是兔子的只数。尽管假设法的思路学生刚开始不太接受,但是孩子们体验到当数量很多的时候,画图和列表的方法就行不通了,所以假设法就更具有普遍性,这样就为以后的数学学习提供了一种非常重要的数学思想。所以尽管方法很多,假设法和列方程相对更优。
三、在古题新解中建立数学模式
其实在生活中,鸡兔同笼的现象是及其少见的,我们也没有必要数出它们的头和脚,算出只数。那么这类题型在现实生活中有哪些应用,它的解题方法给我们哪些启示呢?这些才是这节课要渗透的思想。为此我摘录了古今中外很多类似鸡兔同笼的问题,让学生一一分析。找到这类题目的共同特征,得出共性,总结方法。因此鸡兔同笼不仅仅代表鸡兔同笼,它反映了一种数学模式的建立和数学思想的渗透。学习数学只有在个案的探索中找到了规律性的结论和方法,才能学到有价值的数学。
不过由于一节课时间有限,不可能灵活掌握所有类型,所以有的学生还是有模仿做题的倾向,遇到变式练习时不能正确解决。
《鸡兔同笼》问题教学对于四年级的学生来说有一定的难度,课前我对我班的学生进行了调查。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。
本节课,在整个课堂中,在问题得到解决的同时学生也体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。
对于本节课我个 然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法等多种解题策略和方法,并用教具和多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
二、由于“鸡兔同笼”问题在小学五年级学稍复杂的方程时出现过,也有小部分学生可能在数奥书上见过,会做。而对于四年级的孩子来说,大部分学生不是很会做,因此在备课时我充分考虑到这个情况,所以在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导对学生进行分析,加以教具演示,帮助学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再用课件展示分析过程。通过这两步的学习,大部分学生应该基本能利用假设法来解答“鸡兔同笼”问题。
三、在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的接受能力和时间上的考虑,本来这节课讲的方法就很多,特别是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。
四、我认为本节课的重难点都应该是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡这里,用26-16=10条腿,这里应该说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,通过我的分析,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时可以直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”这里是把兔假设成了鸡,肯定应该是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
不足之处:
本节课在时间的安排上不够合理,导致本节课我并没有完成我预设的内容。本节课重在方法的渗透,学生必须经历多种方法解决该类问题的一个过程,而这个过程是绝对不能走过场的,必须实实在在的引导,这样学生必须有足够的时间,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略,这样一节课的时间就显得不够用了,导致最后没有时间来解决生活中更多类型的实际问题。
鸡兔同笼问题是我国民间� 最早出此刻《孙子算经》中。教材首先透过富有情趣的古代课堂,生动地呈现了在《孙子算经》中记载的“鸡兔同笼”问题,并透过小精灵的提问激发学生解答我国古代著名数学问题的兴趣。
本节课我从较简单的问题入手,让学生尝试解决,熟悉此类题型的一般思路,再让学生以填表的方式初步体验鸡兔同笼状况下两种动物的只数和脚的数量之间的关系,同时探索随着鸡兔只数的。变化,脚的数量也跟着变化的规律。透过展开小组讨论,引导学生从体验鸡兔同笼中鸡兔的头数和脚的只数关系到用“假设法”和列方程解的方法经历探究过程,此环节是本课的重点,学生从体验、尝试到此处的讨论、汇报,个人或群众的智慧在那里得到展现,方程解、算术解对于大部分学生来说至少有一种方法是他自己理解或掌握的。
但是,可能是由于我课前准备不够充分,或者驾驭课堂的潜力有限,在学生汇报的过程中没有做到机敏地倾听和机智地诱导,对于学生的列式没有指明理由,因此感觉学生在全班交流的过程中出现不能理解的状况。我觉得可能是在处理鸡兔只数和脚的数量变化规律的推导过程时,我直接让学生透过表格的形式进行观察,并没有引导学生到比较实际的方向上。
如果我能插入具体的鸡和兔的只数变化时的动态图像,学生就应能更加直观的体会到其中的规律,那么对后面的教学展开将易如反掌。由于此处设计的失误,导致后面的方程解的方法时间不够,课堂巩固练习也没能很好的展开。我想这也可能是我在设计教案时并没有准确思考到学生自身的实际认知水平,本课资料安排过多。如果下次再次教学鸡兔同笼,我想我会把假设法和列方程解的方法分成两个课时,争取让大部分学生都能从多角度思考,运用多种方法来解题。
“鸡兔同笼”问题是我国民间� 在人教版数学四年级下册的尝试与猜测中安排了《鸡兔同笼》这一教学内容,呈现了3种解决问题的方法,都是通过假设举例与列表的方法,寻找解决问题的结果。其中,第一张表格是常规的`逐一举例法,第二张运用了跳跃列表法,第三张运用了中列举法。课堂上学生可能会想出画图的方法,方程法等各种方法。但需要注意的是,教材选“鸡兔同笼”这个题材,主要并不是为了解决“鸡兔同笼”这个问题本身,而是要借助“鸡兔同笼”这个载体让学生经历列表,让学生在大胆的猜测、尝试和不断调整的过程中,体会出解决问题的一般策略——列表。而且在后面相应的练习、复习中,相关的题目也都附上了表格,能够让学生较好地运用这种基本的解题策略解题。教学参考中明确指出,教师不宜补充其他解法,以免分散学生的注意力,影响学生对列表方法这一常用数学方法的掌握,更不应要求学生直接套用公式解题。同时,我对《鸡兔同笼》问题在各种版本中不同的安排也进行了对比研究,比如,在教材中,这一课时安排在四年级,它的教学目标是让学生通过不同方法研究解决鸡兔同笼问题,使学生理解并掌握鸡兔同笼问题的解题方法;一方面是为了培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
本节课属于综合应用课,是“尝试与猜测”的第一课时,其目的是加强数学知识与现实生活中问题的结合,以提高学生综合应用的能力。借助“鸡兔同笼”这个载体,初步获得一些数学活动的经验,在活动中引导学生自主探索,积极思考,主动与他人交流,从中体会出解决问题的一般策略——假设法。深入浅出的教学过程让学生体会到了列表不仅可以解决鸡兔同笼的问题,还可以解决生活中的问题。新课标指出数学来源于生活更要应用于生活。为学生自主探索与合作交流提供机会,搭建平台。
《鸡兔同笼》问题有必须的难度,课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有必须的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。
《鸡兔同笼》本来就是很抽象的课程,估计学习《鸡兔同笼》可能会有必须的难度。所以也只能按照课本那样的列表法,再配合假设法、方程。充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路:
(1)鸡兔同笼,有2只鸡,3只兔子,问鸡、兔共有多少只脚?多少个头?再让所有的兔子扮演成鸡,让学生观察脚数有什么变化?头数有什么变化?一只兔子少了两条腿,三只兔子少几条腿?
出示例题:笼子里有若干只鸡和兔,从上面数有8个头,从下面数有26只脚,问鸡和兔各有几只?
从而让学生假设全部是鸡,从而找出不同,即脚数的变化,进一步讲解脚数的变化是谁的少了?少的10条腿是鸡的还是兔子的?几只兔子的?求出兔子的只数,让学生动手假设全是兔子,求鸡的只数。找出关系:
(总足数-总头数×鸡足数)÷鸡兔足数差=兔数
(总头数×兔只数-总足数)÷鸡兔足数差=鸡数
(2)我让学生用方程,设有x只兔,鸡用(8-x),找出等量关系:
鸡的脚数+兔的脚数=总脚数
4×x+2×(8-x)=26
2x=10
X=5
8-5=3(只)
师生共同经历了二种不同的方法:假设法、列方程三种方法,让学生自己选取喜欢的方法解决《孙子算经》中的问题。学生很自然地选取假设法和列方程方法,自觉进行方法最优化。因为毕竟鸡兔同笼问题比较难。但教学中也存在着很多问题,反思如下:
1、学生汇报时,能够多找学生汇报,其他学生可能会听得更明白。
2、培养学生质疑潜力,听不明白的及时向别人提问,及时解决不懂的问题。
3、学生比较喜欢假设法,但发现推理时思路不清,容易出错,如果及时指导学生写推导过程就会较好地避免问题的出现。
4、强调运用方程解此类题时设足数多的为x,有足数找等量关系。
本节课,在整个课堂中,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还就应在从主次的角度更好地进行设计。
但在平时的教学中也存在值得我们进一步思考的问题:
1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等;
2、要想大面积提高课堂教学效益,务必在课堂中注重培优辅困,个性是学困生的辅导如何在课堂教学中落实,使他们透过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标;
3、有好处的练习及作业的设计要思考有利于知识点的落实,要能激发学生的兴趣,还要思考练习资料的层次性,手段的灵活性,逐步培养学生的创新潜力和动手潜力。
数学不仅仅要让学生学会计算、解决实际问题等,还要通过这些知识的学习让学生的思维得到锻炼。鸡兔同笼问题就是这样一种问题,在生活中,鸡兔同笼的现象是很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数他们的脚呢?直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,鸡兔同笼问题,是让我们通过鸡兔腿数的变化,在这种变化中寻找不变的规律,并采用有效的手段来理解数学问题的过程。以下是我上完课的几点体会:
一、大敢转换情境,提高情境“知名度”。
生动有趣的数学问题情境,能让学生愉快的探索数学,享受数学带来的乐趣。课堂教学中教师要创设学生喜闻乐见的教学情境,使学生始终处于一种良好的愉悦的氛围中,从而调动学生学习数学的兴趣,发展学生的思维能力。还要注重对学生进行引导,让学生通过观察、操作、讨论、思考发现并掌握知识,时刻把学生推到学习的主体地位,在一个恰当的主题中学习数学,发展能力。基于这一点,本节课的内容安排在“数学与生活”当中,用在生活中经常遇到的一些问题,来引入(幻灯出示:)
1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?
2、12张乒乓球台上同时有34人正进行乒乓球比赛,正在进行单打和双打比赛的球台各有几张?
类似于这样的问题,我们的祖先早在1500多年前就已经开始研究了,再课件出示《孙子算经》及鸡兔同笼问题,但同时又聪明地把数改小了:今有鸡兔同笼,上有八头,下有二十二足,问鸡兔各几何?一石激起千层浪,鸡兔怎能同笼?学生的探究欲望马上调动起来,这时,又让学生了解“经典”,感受“经典”。
二、鼓励参与,在合作中提高学习效率。
根据《新课程标准》在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课中,我主要通过创设现实情境,让学生投入到解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。学生能够积极地思考,积极地合作,积极地探讨,充分地发挥了小组的作用,兵教兵,通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。大部分学生学会了,这是很让我感到激动的,因为毕竟鸡兔同笼问题比较难。
三、关注每一个学生的发展,提高课堂教学的生成性。
由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同一问题中,学生的认知水平也有不同。在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:逐一列表法、取中列表法、假设法、列方程、画图法及古人的砍足法,最后比较哪种算法比较好。这样教学既培养了学生探究能力和小组合作能力,又体现了算法多样化与优化,也让不同的学生在同一节课中都有不同程度地提高。
总的来说,本节课从学的角度呈现学习内容,合理安排教学过程,提供操作材料,拨动学生心弦,把学习的主动权交给学生,让学生在合作学习的活动中主动完成知识的建构过程。因此,在整堂课中,学生学得兴趣盎然,在问题得到解决的同时体验到了成功的喜悦,感受到数学知识的价值和数学学习的乐趣。但在教学时间的控制上还略显紧张,一些环节的处理还应该在从主次的角度更好地进行设计。
但教学中也存在着很多问题,反思如下:
1、小组合作学习中教师如何调控才能进一步提高合作学习的效率,如时间的把握、学生合作过程的控制、合作学习的效果等。
2、学生汇报时,要多培养学生质疑能力,听不明白的及时向小老师提问,及时解决不懂的问题。
3、要注重培优辅困,特别是学困生的辅导如何在课堂教学中落实,使他们通过教师的引导取得明显的学习效果,真正落实新课标提出的“不同的人在数学上得到不同的发展”目标。