作为一位到岗不久的教师,课堂教学是我们的任务之一,通过教学反思能很快的发现自己的讲课缺点,写教学反思需要注意哪些格式呢?下面是的小编为您带来的《因数和倍数》教学反思【9篇】,在大家参照的同时,也可以分享一下给您最好的朋友。
《因数和倍数》这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。
同时这部分内容是比较重要的,为五年级的最小公倍数和最大公因数的学习奠定了基础。
本节可充分发挥学生的主体性,让每个学生都能参加到数学知识的学习中去,调动学生学习的兴趣和主动性。本节课主要从以下几个方面进行教学的。
一、动手操作探究方法。
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,变抽象为具体。
二、倍数教学,发现特点。
利用乘法算式,让学生找出3的倍数,这里让学生理解:
(1)3的倍数应该是3与一个数相乘的积。
(2)找3的倍数是要有一定的顺序,依次用1、2、3……与3相乘。有了找3倍数的方法,在上学生找出2和5的倍数。
这样即巩固对例题的理解,同时也为接下来的讨论倍数的特点奠定基础。最后让学生通过讨论发现:
(1)一个数的倍数个数是无限的(要用省略号)。
(2)一个数的最小倍数是本身,没有最大的倍数。
三、因数教学,发现特点。
找一个数因数的方法是本节课的难点。找一个数的因数的方法和倍数相似,大部分学生都用乘法算式寻找一个数的因数,这里教师可以通过几到有序排列的除法算式启发学生进一步理解。强调有序(从小到大),不重复、不遗漏。随后让学生找出15、16的因数有那些。最后通过比较讨论让学生得出因数的特点:
(1)一个数因数的个数是有限的。
(2)一个数最小的因数是1,最大的因数是本身。(让学生明白所有的数都有因数1)。
四、练习反馈情况
从学生的'作业情况来看,大部分学生掌握的还是不错的,有部分基础差的学生,有如下几点错误出现:
1、倍数没有加省略号。
2、分不清倍数和因数,倍数也加省略号,因数也加省略号。
3、因数有遗漏的情况。
从以上情况来看,在今后的教学中要多关注基础比较差的学生,注意补差工作;同时要注意教学中细节的处理。
这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。
本单元内容在编排上与老教材有较大的差异,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大,因此教学例题“找出18的因数”时,我先放手让学生自己找,学生在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是18的乘法算式或列出被除数是18的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的`终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题,我也不由得佩服这些孩子对知识的迁移能力。在这个环节的处理上,教材的本意是先由教师提出“想一想,几和几相乘得18?”引导学生从因数的概念,用乘法来找因数,而我考虑到本班孩子的学情(绝大多数学生能够运用所学知识,找到求因数的方法),如教师一开始就引导学生:想几和几相乘,势必会造成先入为主,妨碍学生创造性的思维活动?用已有的经验自主建构新知是提高学生学习能力的有效途径,让学生独立思考、自主探索、促思(促进学生思维发展)、提能(提高学习能力)是我的教学策略主要内容。至于这两种方法孰重孰轻,的确难以定论。实际上,对于数字较小的数(口诀表内的),用乘法来求因数还是比较容易,但是超出口诀表范围的数用除法则更能显示出它的优势,如求54的因数有哪些?学生要直接找出2和几相乘得54,3和几相乘得54,4和几相乘得54,显然加大了思维难度,如用除法不是更简单直接一些吗?学生的学习潜力是巨大的,教师是学生学习的引领者,因此教师的观念和行为决定了学生的学习方式和结果,所以我认为教师要专研教材,充分利用教材,根据学生的实际情况,创造性地使用教材,为学生能力的发展提供素材和创造条件,真正实现学生学习的主体地位。
学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。教师能像教材中那样一头一尾地成对板书因数,这样既不容易写漏,而且学生么随着流程的进行,势必会感受到越往下找,区间越小,需要考虑的数也就越少。当找到两个相邻的自然数时,他们自然就不会再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的。
一、数形结合减缓难度
《因数和倍数》这一资料,学生初次接触。在导入中我创设有效的数学学习情境,数形结合,变抽象为直观。让学生把12个小正方形摆成不一样的长方形,并用不一样的乘法算式来表示自我脑中所想,借助乘法算式引出因数和倍数的好处。由于方法的多样性,为不一样思维的展现带给了空间,激活学生的形象思维,而透过数学潜在的“形”与“数”的关系,为下方研究“因数与倍数”概念,由形象思维转入抽象思维打下了良好基础,有效地实现了原有知识与新学知识之间的链接。在学生已有的知识基础上,直观感知,让学生自主体验数与形的结合,进而构成因数与倍数的好处。使学生初步建立了“因数与倍数”的概念。这样,学生已有的数学知识引出了新知识,减缓难度,效果较好。
二、自主探究,合作学习
放手让每个同学找出36的所有因数,学生围绕教师提出的“怎样才能找全36的所有因数呢?”这个问题,去寻找36的所有因数。由于个人经验和思维的差异性,出现了不一样的答案,但这些不一样的答案却成为探索新知的资源,在比较不一样的答案中归纳出求一个数的因数的思考方法。既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。透过展示、比较不一样的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。透过观察12,36,30,18的因数和2,4,5,7的倍数,让学生自我说一说发现了什么?由于带给了丰富的观察对象,保证了观察的目的性。诱发学生探索与学习的欲望,从而激活学生的思维。让学生在许多的不一样中透过合作交流找到相同。
三、在游戏中体验学习的快乐
在最后的环节中我设计了“找朋友”的游戏,层次是先找因数朋友,再找倍数朋友,最后为两个数找到共同的朋友。这样由浅入深的设计贴合学生跳一跳就能摘到果子的心理,同时也让学生在游戏中再次体验因数与倍数的特点,如找完因数朋友时我以你是我的最大的因数朋友点出一个数的因数的个数是有限的,找倍数朋友时起来的学生十分多,让学生再次体验一个数的倍数的个数是无限的。找共同的朋友则是一个思维的升华过程,能有效地激活学生的思维,在求知欲的支配下去进行有效地思考。这一环节使课堂气氛更加热烈,也让学生在简单的氛围中体验到学习的快乐。
这堂课我还存在许多不足,我的教学理念很清楚,课堂上学生是主体教师只是合作者。但在教学过程中许多地方还是不由自主的说得过多,给学生的自主探索空间太少。如在教学找36的因数这一环节时,由于担心孩子们是第一次接触因数,对于因数的概念不够了解,而犯这样或那样的错误,所以引导的过多讲解的把工作搞得更好。过细,因此给他们自主探究的空间太小了,没能很好的体现学生的主体性。虽然是新理念但却沿用了旧模式,在今后的教学中我还要不断改善自我的教法,让学生成为课堂的真正主人。
《因数和倍数》是人教版五年级下册第二章第一课时所学内容,这一内容与原来教材比有了很大的不同,旧教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识因数和倍数的,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。上完这节课觉得有以下几点做得较好:
1、通过操作实践,认识因数和倍数
我开门见山,直接入题,创设了有效的数学学习情境,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义,这样在学生已有的知识基础上,从动手操作,直观感知,让学生自主体验数与形的结合,进而形成因数与倍数的意义,使学生初步建立了“因数与倍数”的概念,减缓难度,效果较好。
2、通过自主化、活动化、合作化,找因数和倍数
整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、引导者、参与者,。整节课中,我始终为学生创造宽松的学习氛围,让学生自主探索,学习理解因数和倍数的意义,探索并掌握找一个数的因数和倍数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。
3、通过变式拓展,培养学生能力
课前我精心设计练习题,力求不仅围绕教学重点,而且注意到练习的层次性,趣味性。譬如:让学生用所学知识介绍自己,通过数字卡片找自己的因数和倍数朋友等等。学生拿着自己的数字卡片上台找自己的朋友,让台下学生判断自己的学号是不是这个数的因数或倍数,如果台下学生的学号是这个数的因数或倍数就站到前面。由于答案不唯一,学生思考问题的空间很大,这样既培养了学生的发散思维能力,又使学生享受到了数学思维的快乐,感悟数学的魅力。
但是还存在一些不可忽视的问题:
1、课上应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。
2、课堂用语还不够精炼,应该进一步规范课堂用语,做到不拖泥带水。
3、教者评价应及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来,避免单一化。
在本课教学时,先让学生用12个同样大小的正方形,摆成一个长方形,并用乘法算式把自己的摆法表示出来,让学生动手操作、合作交流,怎样摆,有哪些不同的摆法?先让学生小组交流、操作后,以其中的一道乘法算式为例,引出倍数和因数的概念。
这样的安排,体现了以学生为本,用学生已有的经验和动手操作能力,很好的调动了学生学习的积极性和主动性。
一方面让学生乐于接受,是学生在展示自己的想法,老师仅仅是组织者。另一方面培养了学生善于观察和倾听他人的想法的良好学习态度。对于找一个数的倍数比找一个数的因数的方法要容易些,所以我先教学如何找一个数的倍数,在学生学会了找一个数的倍数的方法基础上,再教学如何找一个数的因数,这样教学便于学生自己探索并总结归纳出找一个数的因数的方法,体现了让学生自主学习。
在处理本节课的难点找36的因数时,我原来是放手让学生自己去找的。结果试上时很多学生没有头绪,无从下手。时间倒是花去不少,可方法却没有多少可行的。我静下心来寻找原因,找一个的因数是学生以前从未遇到过的问题,自然不知道如何解决。再加上找一个数的因数比找一个数的倍数要难得多,我这样贸然地放手,学生当然不知所措了。
后来,在处理找36的因数时,如何做到既不重复又不遗漏地找36的因数?我认为要对学生扶放得当,要有适当地扶,学生才能探索出方法。于是,我让学生回忆刚才的'几道乘法算式,然后把找一个数的倍数的方法有效的迁移到找一个数的因数中。果然学生知道了该如何思考后,效果好了很多。
教学中我发现倍数和因数这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,在此基础上认识因数倍数。而这里的处理的方法有所不同,我在教学时做了一些改动,让学生用12个小正方形摆长方形,然后自☆☆己用算式把摆法表示出来。这样学生的算是就不局限于乘法,有一部分学生写了除法算式。这样学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。因为现在也有很多学生学习奥赛,所以我从整除的角度也介绍了因数与倍数的概念.由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动的接受。如让学生思考:你觉得3和12、4和12之间有什么关系呢?(对乘除法学生有着相当丰富的经验,因此不少学生能说出倍数关系,可能说得不很到位,但那是学生自己的。东西)。当学生认识了倍数之后,我进行了设问:12是3的倍数,那反过来3和12是什么关系呢?尽管学生无法回答,但却给了他思考和接受“因数”的空间,使学生体会到12是3的倍数,反过来3就是12的因数,接下来4和12的关系,学生都争者要回答。
如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下五分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这不老师给予有有效得多。
《倍数和因数》这一资料与原先教材比有了很大的不一样,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而此刻是在未认识整除的状况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分资料学生初次接触,对于学生来说是比较难掌握的资料。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、决定,需要一个长期的消化理解的过程。
这节课我在教学中充分体现以学生为主体,为学生的探究发现带给足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:
(一)操作实践,举例内化,认识倍数和因数
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不一样的长方形,再让学生写出不一样的乘法算式,借助乘法算式引出因数和倍数的好处。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而构成因数与倍数的好处。使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
(二)自主探究,好处建构,找倍数和因数
整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的好处,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。
新课程提出了合作学习的学习方式,教学中的多次合作不仅仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习潜力,初步构成合作与竞争的意识。
找一个数因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的。巡视中发现有很多的学生完成的不是很好,我就决定先交流在让学生寻找,这样就用了很多时光,最后就没有很多的时光去练习,我认为虽然时光用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有必须困难,那里能够充分发挥小组学习的优势。先让学生自我独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按必须的次序进行。之后让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自我刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。
(三)变式拓展,实践应用---—促进智能内化
练习的设计不仅仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地理解。教学之前我明白这节课时光会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时光安排的能够少一些,所以我在第一部分认识因数和倍数这一环节里缩短出示时光,直接出示,,实际效果我认为是比较理想的。课上还就应及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自我的发现:最小的因数是1,最大的因数是它本身。教师就应及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。
1、在导入的过程中,创设有效的数学学习情境,激发了学生的学习兴趣。让学生通过观察教材上的除法算式,采用小组合作的方式进行自主探究,把所给的算式按照特点进行分类,激活了学生的形象思维,为下面研究因数与倍数的概念,打下了良好基础,有效地实现了原有知识与新知识之间的链接。
2、在学生已有的知识基础上直观感知,让学生自主体验发现知识的过程,进而理解了因数和倍数的意义,使学生初步建立了“因数和倍数”的概念。这样,利用学生已有的数学知识引出了新知识,减缓难度,效果较好。
3、放手让学生自己去探索寻找一个数的因数或倍数的方法。由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知识的资源,在比较不同的答案中归纳出求一个数的因数的倍数的方法。既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。
《倍数和因数》这一节的主要内容是让学生在已有知识和经验的基础上,自主探索和总结找一个数的倍数和因数的方法;用“列举法”研究一个数的倍数的特点和一个数的因数的特点。这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:
(一)操作实践,举例内化,认识倍数和因数。
我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念,使数与形做到了有机的结合。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,降低了难度,效果较好。
(二)自主探究,意义建构,找倍数和因数。
一个数的倍数与因数的特征,单凭记忆也不难接受,为防止学生进行“机械学习”,我提出“任何一个不是0的自然数的因数有什么特点,”让学生观察12,20,16,36的因数,思考:一个数的因数的个数是有限的还是无限的?其中最大的因数是几?最小的呢?让学生的思维有了明确的指向。整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。
(三)抓住学生思维的“最近发展区”,让学生在“独立思考——集体交流——互相讨论”的过程中,促使学生学会有序思考,从而形成基本的技能与方法,既关注了过程,又关注了结果。
找一个数的因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流再让学生寻找,这样就用了很多时间,最后就没有很多的时间去练习,我认为虽然时间用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。
先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。
(四)变式拓展,实践应用————促进智能内化。
练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。
(五)重视数学意义的渗透与拓展,力求用数学的本质吸引学生,树立为学生的继续学习和终身发展服务的意识。本节课的设计,我就关注了学生的学习后劲。如列举法的介绍,有序思考的解决问题的策略等。
由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我让学生先进性了预习,做好了一定的准备工作。在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。