分数除法教案【优秀3篇】

作为一位优秀的人民教师,通常会被要求编写教案,借助教案可以让教学工作更科学化。那么什么样的教案才是好的呢?这次为您整理了分数除法教案【优秀3篇】,希望能够帮助到大家。

《分数除法》数学教案 篇1

教学目标

1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.

2.能正确熟练地解答稍复杂的分数应用题.

3.培养学生分析问题和解决问题的能力.

教学重点

明确分数乘、除法应用题的联系和区别.

教学难点

明确分数乘、除法应用题的联系和区别.

教学过程

一、启发谈话,激发兴趣.

在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答

时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.

二、学习新知

(一)出示例8的4个小题.

1.学校有20个足球,篮球比足球多 ,篮球有多少个?

2.学校有20个足球,足球比篮球多 ,篮球有多少个?

3.学校有20个足球,篮球比足球少 ,篮球有多少个?

4.学校有20个足球,足球比篮球少 ,篮球有多少个?

(二)学生试做.

1.第一题

解法(一)

解法(二)

2.第二题

解:设篮球有 个.

解法(一)

解法(二)

解法(三)

3.第三题

解法(一)

解法(二)

4.第四题

解:设篮球 个.

解法(一)

解法(二)

解法(三)

(三)比较区别

1.比较1、3题.

教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

(1)观察讨论.

(2)全班交流.

(3)师生归纳.

这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?

就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.

2.比较2、4题

教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?

(1)观察讨论.

(2)全班交流.

(3)师生归纳.

这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.

分数除法教案 篇2

【学习目标】

1、掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的

解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、培养并提高分析、判断、探索能力及初步的逻辑思维能力。

3、提高解答应用题的能力。

【学习重难点】

1、重点是弄清单位“1”的量,会分析题中的数量关系。

2、难点是分析题中的数量关系。

【学习过程】

一、复习题:

小红家买来一袋大米,重40千克,吃了5,还剩多少千克? 8

1、分析题目的条件和问题,画出线段图。

2、交流讨论并解答。组内检查核对,提出质疑。

1”,如果单位“1”的具体数量是已

知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,

直接用乘法计算。

二、探索新知

1、补充例题:小红家买来一袋大米,吃了

(1)吃了5,还剩15千克。买来大米多少千克? 85是什么意思?应该把哪个数量看作单位“1”? 8

(2)理解题意,画出线段图。 (3)根据线段图,分析数量关系式:____________________________

(4)根据等量关系式解答问题。___________________________

2、学习例2

(1)阅读例5的主题图及题目,用自己的话表述题意,说一说“美术小组的人数比航模

小组多1”的含义,把谁看作单位“1”?_________________________________ 4

(2)自己动手,画线段图表示两个小组的人数,将已知条件和问题标注在线段图上,图

中的未知数可以用X表示。

(3)结合线段图,写出等量关________________________________________________

(4)列出方程式并解答,算完后梳理一下自己整道题的解题思路?(注意解题格式)

三、知识应用:独立完成P40练习十第4题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:完成练习十第10--13题

2、拓展提高:练习十第14题以及P42最后一题“思考练习”。

五、总结梳理:回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数除法教案 篇3

教学内容:

分数除法的意义和分数除以整数(教科书第25页——26页的例1,练习七第1——7题)。

教学目标:

使用学生理解分数除法的意义,掌握分数除以整数的计算方则,并正确计算分数除以整数。

教学重点:

分数除以整数的计算方法 。

教学难点:

除转化为乘和道理。

教学过程:

一、 复习

1、口答下面各题的倒数。

2 、1、0.4

2、根据一个乘法算式写出两个除法算式。

3×15=45 125×8=1000

二、 新授

揭示课题:分数除法

1、分数除法的意义和计算法则

(1) 出示25页的月饼图。

(2) 引导学生回答问题

1)每人吃半块月饼。4个人一共吃多少块?怎样列式?得多少?

板书:×4=2 (块)

2)再看把两块月饼平均分给4个人,每人分得几块?怎样列式?得多少?

板书:2÷4=(块)

3) 如果把两块月饼平均分给每个人半块,可以分给几人?怎样列式?得多少?

板书:2÷=4(人)

(3) 让学生观察比较(板书的)3个式子的已知数和得数。

明确:第一个算式是已知两个因数(和4)求它们的积(2),用乘法计算。

第二算式是已知两个因数的积2与其中一个因数4,求一个因数,用除法计算。 第三算式是已知两个因数的积2与其中一个因数,求一因数4,用除法计算。

小结:分数除法的意义。

强调:分数除法的意义和整数除法的意义相同。

(4) 练习:教科书第25页"做一做。

2、分数除以整数的计算方法。

(1)出示例子:把米铁丝平均分成2段,每段长多少米?

(2)启发学生分析数量关系。(画线段图表示)

米是1米的,把1米平均分成7份,表示其中的6份。6份是,再加上米米里面有6个米,要把米平均分成2段实质就是把6个米平均分成2份,每份是3个米,就是米。

板书 解法1:÷2==(米)

使学生明白。

1)分数除以整数,可以把分数的分子除以整数作分子,分母不变。

2)这种计算方法有限制条件的,分子必须能被整数整除。

还有其它的解法吗?

引导学生结合图形在学过知识的基础上理解到,把米平均分成2段,每段长多少米实际上就是求米的是多少,所以用×来计算。

板书 解法2:÷2=×=(米)

(3) 小结:分数除以整数的计算方法。

板书:分数除以整数(0除外),等于分数乘以这个娄的倒数。

强调。

1)被除数不变;

2)在“÷”转化为“×”的同时,除数的分子、分母调换位置;

3)0不能做除数,0没有倒数;

4)这种计算方法在一般情况下都可以进行,应用普遍。

5)练习:教科书第26页“做一做”。3、看教科书第25——26页,注意解决学生提出的问题。

三、 巩固练习

练习七第1、3题。

四、 作业

练习七第2、4、5、6题

五、 课外思考

练习七第7题。

一键复制全文保存为WORD
相关文章