在教学工作者开展教学活动前,就有可能用到教案,教案是教学活动的依据,有着重要的地位。那么应当如何写教案呢?
教学过程:
一、课前准备:
课前让学生分组或者自由结合到社会上进行调查、搜集有关储蓄的信息,把调查的结果、遇到的问题或感受记录下来。
二、课内交流、探究
师:在储蓄的过程中,你搜集到哪些相关的知识?(学生分组汇报调查结果)
(生汇报。开放的问题情景下,根据每组学生的差异,预计可能出现下列情况:
(1)有关储蓄的一般知识,如储蓄的方式;
(2)有关储蓄的相关概念,如本金、利息、利率、税后利息税的知识;
(3)有关利息的计算方法,如有的小组利率的含义推导出利息的计算方法;
(4)、有关调查中遇到的困难、解决的方法和自己的感受)
师:根据每组交流的情况给予相应的评价,并和学生共同整理储蓄的相关知识,形成知识体系。
板书:利息与本金的。比值叫做利率。
利息=本金利率时间
三、创设情景、体验储蓄
1、创设情景
师:同学们,张大爷是一个孤寡老人,他打算把自己多年来节省下来的1000元钱存入银行,定期为两年,由于他行动不便,你能帮助他进行储蓄吗?
2、体验储蓄。根据刚才的汇报情况,安排教学过程。
(1)学生拿出复制好的储蓄存款凭证进行填写。
(2)学生活动,教师了解学生填写情况后,最后利用投影仪进行订正。
(3)、充分联系生活,设置储蓄密码。
师:同学们,为了保证储蓄的安全,�
师:设置什么样的密码比较好呢?
(学生热烈进行讨论)
生1:可以用存款人的生日。
生2、可以用有纪念意义的日期。
生3:比较容易记的数字。
师:设置密码时,一般设置比较容易记忆的数字,可以用某人的生日或与他有关系的一些数字。
师:请你们给张大妈设置一个密码。
(4)保管好存折或存单。
师:储蓄完成以后,银行要给我们一个存单或存折,我们要牢记密码,妥善保管好存单或存折。
四、运用知识、解决问题
1、运用新知识解决问题。
师:同学们,根据刚才的知识,如果告诉你两年的利率是2.43%,你能够求出张大爷储蓄到期时能获得多少利息吗?
(学生分组讨论计算,汇报情况)
生1:10002.43%2=58.6(元)
生2:10002.43%2=58.6(元)
58.620%=11.72(元)
58.6-11.72=46.88(元)
生3:10002.43%2=58.6(元)
58.6(1-20%)=46.88(元)
师生集体讨论订正,教师强调利息的计算方法。
师:储蓄到期时,张大妈实际领取本金和利息一共是多少?
生:1000+46.88=1046.88(元)
师生总结计算方法。
2、巩固新知学生进行练习
五、课后实践、体验储蓄过程
师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,我们下节课继续交流讨论。
教学与反思:
本节课的教学设计能根据新的《课程标准》理念的要求,结合学生的生活实际,力求体现了以下几点教学思想:
一、关注学生发展,整合教学目标
新《课程标准》明确指出:数学教育要从以获取知识为首要目标转变为首先关注人的发展。这是对长期以来以知识为本位教育目标的重要改革,也是为学生终身学习和可持续发展奠定基础,更重要的是学生在今后获取高质量生存条件的有力保证。所以,本节课根据教材特征结合学生的生活背景,按照关注学生发展理念的认识,确立了知识技能目标、情感性目标、实践性目标和体验性目标。努力使学生在发展性领域和知识性领域获得发展、构建自我。
二、联系实际应用,重组教学内容
长期以来,教学内容都是教师在遵循教材和大纲的基础上确立的,教师只关注教材、大纲和教学参考资料,忽视了学生的生活实际和生活背景,学生接受的归根到底只能算是数学知识。这种数学知识不能服务于学生的生活,更不能促进学生的发展。因此我们在教学中一定要加强课程内容与生活以及现代社会科技发展的联系,关注学生的兴趣和经验,精选终身学习必备的基础知识和技能。本节课充分联系学生的实际生活应用,重组教学内容,将课前调查、课后实践、怎样填写储蓄凭条、怎样设置密码等知识和本节课教学内容利息组合在一起。使学生在实际的应用中经历了储蓄的过程,充分理解了有关利息的知识。并在相关问题的解决中,相应地获得了终身发展必备的知识和技能。
三、培养学生能力,开放教学过程
学生各种能力的形成和发展是我们教学的首要任务。传统的教学过程将学生禁锢在课堂上,阻碍了学生能力的形成和发展。本节课根据学生的生活经验和要求,为了培养学生的各种能力,尝试大胆地开放教学过程。课前让学生分组进行有关储蓄知识的调查,搜集有关相关的信息,这样培养了学生搜集信息的意识和实际调查的能力,分组调查中又培养了学生的合作精神和能力;课堂教学时让学生通过小组交流,把搜集到的信息进行汇报整理,总结利息的求法,培养了学生信息的交流和处理能力;课后又要求学生去亲自实践,体验储蓄的过程,培养了学生良好的生活习惯和利用知识解决问题的能力。
四、针对学生差异,实施多元评价
《新课程标准》评价体系,不仅要求教师要关注学生在语文和数学逻辑方面的发展,而且要发现和发展学生多方面的潜能,了解学生发展中的需求,帮助学生认识自我,建立自信,促进学生在已有的水平上发展,发挥评价的教育功能。本节课在教学过程中,除了针对学生的个性差异采取各种教学活动外,还给学生提供各种展示自己的机会和空间。在课内进行交流时,教师还能根据学生的不同回答,给出知识性、行为逻辑性、实践性、合作性等方面的多元评价方式,使不同的学生认识了自我,有利于他们的再发展。
一、教学目标
1、知识目标:掌握数轴三要素,会画数轴。
2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;
3、情感目标:向学生渗透数形结合的思想。
二、教学重难点
教学重点:数轴的三要素和用数轴上的点表示有理数。
教学难点:有理数与数轴上点的对应关系。
三、教法
主要采用启发式教学,引导学生自主探索去观察、比较、交流。
四、教学过程
(一)创设情境激活思维
1、学生观看钟祥二中相关背景视频
意图:吸引学生注意力,激发学生自豪感。
2、联系实际,提出问题。
问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。
师生活动:学生思考解决问题的方法,学生代表画图演示。
学生画图后提问:
1、马路用什么几何图形代表?(直线)
2、文中相关地点用什么代表?(直线上的点)
3、学校大门起什么作用?(基准点、参照物)
4、你是如何确定问题中各地点的位置的?(方向和距离)
设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。
问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?
师生活动:
学生思考后回答解决方法,学生代表画图。
学生画图后提问:
1.0代表什么?
2、数的符号的实际意义是什么?
3.-75表示什么?100表示什么?
设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。
问题3:生活中常见的温度计,你能描述一下它的结构吗?
设计意图:借助生活中的常用工具,说明正数和负数的`作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。
问题4:你能说说上述2个实例的共同点吗?
设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。
(二)自主学习探究新知
学生活动:带着以下问题自学课本第8页:
1、什么样的直线叫数轴?它具备什么条件。
2、如何画数轴?
3、根据上述实例的经验,“原点”起什么作用?
4、你是怎么理解“选取适当的长度为单位长度”的?
师生活动:
学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。
设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。
①数轴的定义。
②数轴三要素。
练习:(媒体展示)
1、判断下列图形是否是数轴。
2、口答:数轴上各点表示的数。
3、在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小组合作交流展示
问题:观察数轴上的点,你有什么发现?
数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。
设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。
(四)归纳总结反思提高
师生共同回顾本节课所学主要内容,回答以下问题:
1、什么是数轴?
2、数轴的“三要素”各指什么?
3、数轴的画法。
设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。
(五)目标检测设计
1、下列命题正确的是()
A.数轴上的点都表示整数。
B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。
C.数轴包括原点与正方向两个要素。
D.数轴上的点只能表示正数和零。
2、画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。
3、画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是________。
五、板书
1、数轴的定义。
2、数轴的三要素(图)。
3、数轴的画法。
4、性质。
六、课后反思
附:活动单
活动一:画一画
钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。
思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?
活动二:读一读
带着以下问题阅读教科书P8页:
1、什么样的直线叫数轴?
定义:规定了_________、________、_________的直线叫数轴。
数轴的三要素:_________、_________、__________。
2、画数轴的步骤是什么?
3、“原点”起什么作用?__________
4、你是怎么理解“选取适当的长度为单位长度”的?
练习:
1、画一条数轴
2、在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5
活动三:议一议
小组讨论:观察你所画的数轴上的点,你有什么发现?
归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。
练习:
1、数轴上表示-3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。
2、距离原点距离为5个单位的点表示的数是________。
3、在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是________。
附:目标检测
1、下列命题正确的是()
A.数轴上的点都表示整数。
B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。
C.数轴包括原点与正方向两个要素。
D.数轴上的点只能表示正数和零。
2、画数轴,在数轴上标出-5和+5之间的所有整数。列举到原点的距离小于3的所有整数。
3、画数轴,观察数轴,在原点左边的点有_______个。
教学内容
人教版《义务教育课程标准实验教科书数学》六年级上册
教学目标
1.使学生通过绕一绕、滚一滚等活动,自主探索圆的周长与直径的倍数关系。知道圆周率的含义,并能推导出圆的周长公式,学会运用公式解决简单的求圆周长的实际问题。
2.使学生在活动中培养初步的动手操作能力和空间观念。
3.结合圆周率的教学,使学生感受数学的文化价值,激发学习数学的兴趣。
教学过程
一、复习导入
师:这一节课我们来研究有关周长的问题。
出示正方形
师:看屏幕,认识吗?
师:这是一个(正方形)
师:谁来指一指它的'周长
生上台指。
师完整指:正方形4条边的总长就是它的周长。
出示圆
师:继续看,这是。
生:圆
师:圆的周长你能指一指吗?
生上台指
师:我们一起来指一指!从一点开始,绕一圈,回到这一点里结束。看清楚了吗?(出示动画)
师:围成圆一周曲线的长度就是圆的周长
【板书:圆的周长】
二、感知化曲为直
1、师:2个图形,分别为1号和2号。(给图形标号。)
师:给你一把直尺,(慢慢的拿出来)。让你通过测量得到它们的周长,【板书:量】你愿意测量几号?
师:想想,用手势1或者2告诉老师……怎么想的?
……
师:对,正方形是由线段围成的,可以用直尺直接测量。
而围成圆的——是一条曲线【板书:曲】,直接量确实不太方便。
师:不过呢,老师今天就是要为难一下你们,要求用直尺直接量出圆的周长,这可是要想办法的哦!敢不敢挑战?
2、用直尺测量圆的周长
(1)荧光圈
师:看,什么?(圆形的荧光圈)怎样量它的周长?
生:把接头拔下来,拉直了量。
师:像这样!断开,拉直测量!
把接头部分去掉,这一段的长就是荧光圈的周长。
这个方法很不错哦!
(2)飞镖盘
师:继续挑战!第二样,什么?(圆形的飞镖盘)能拉直量吗?
怎么办呢?
生:用线绕。
课件演示:线贴紧圆绕一周,多余部分去掉或者做上记号,然后把线拉直测量,这一段线的长就是圆的周长。
师:还有其他办法吗?
生:滚
教学目的
1、了解一元一次方程的概念。
2、掌握含有括号的一元一次方程的解法。
重点、难点
1、重点:解含有括号的一元一次方程的`解法。
2、难点:括号前面是负号时,去括号时忘记变号。
教学过程
一、复习提问
1、解下列方程:
(1)5x—2=8(2)5+2x=4x
2、去括号法则是什么?“移项”要注意什么?
二、新授
一元一次方程的概念。
如44x+64=328 3+x=(45+x)y—5=2y+1问:它们有什么共同特征?
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程。
例1、判断下列哪些是一元一次方程
x= 3x—2 x—=—1
5x2—3x+1=0 2x+y=1—3y =5
例2、解方程(1)—2(x—1)=4
(2)3(x—2)+1=x—(2x—1)
强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“—”号,注意去掉括号,要改变括号内的每一项的符号。
补充:解方程3x—[3(x+1)—(1+4)]=1
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
三、巩固练习
教科书第9页,练习,1、2、3。
四、小结
学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。
五、作业
1、教科书第12页习题6。
2、第1题。
教学目标和要求:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、 列代数式
(1)若正方形的边长为a,则正方形的面积是 ( )
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为( )
(3)若x表示正方形棱长,则正方形的体积是( )
(4)若m表示一个有理数,则它的相反数是( )
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 ( ) 元。
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)
2、 请学生说出所列代数式的意义。
3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1)abc; (2)b2; (3)-5ab2; (4)y; (5)-xy2; (6)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
概念:
单项式的系数:单项式中的数字因数。
单项式的次数:在单项式中,所有字母的指数之和。
4.例题:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1; ② ; ③πr2; ④-ab。
答:①不是,因为原代数式中出现了加法运算;
②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2;
④是,它的系数是-1,次数是3。
例2:下面各题的判断是否正确?
①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab3c2的次数是0+3+2;
④-a3的系数是-1; ⑤-32x2y3的次数是7; ⑥πr2h的系数是。
通过其中的反例练习及例题,强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关。
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的`学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)
6.课堂练习:课本p56:1,2。
三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。
四、作业布置:
课本p59:1,2。
2.1第2课时整式
教学内容
1、 多项式、整式的有关概念
2、正确区分单项式和多项式
教学目标
1、知识与技能
(1)学生理解多项式的概念。
(2)使学生能准确地确定一个多项式的次数和项数。
(3)能正确区分单项式和多项式。
2、过程与方法
通过区别单项式与多项式,培养学生发散思维。
3、情感、态度与价值观
在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想。
教学重、难点
1.重点:多项式的概念及单项式的联系与区别。
2.难点及关键:多项式的次数的确定,多项式中各项的符号问题,以及多项式与单项式的联系与区别。
教学过程
一、创设情境,导入新课
师:上节课我们学习了单项式的有关概念,同学们看下面一些问题。
1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数。
, , ,2, , ,
2.圆的半径为 ,则半圆的面积为_____________,半圆的总长为_____________.
学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励。
【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为 很自然地引出本节内容。
师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?
学生活动:同座进行讨论,然后选代表回答。
师:谁能把1题中不是单项式的式子读出来?(师做相应板书)
学生活动:小组讨论, 、 , , 对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充。
二、探索新知
师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式。
学生活动:讨论归纳什么叫多项式。可让学生互相补充。
教师概括并板书
多项式:几个单项式的和叫多项式。
师:强调每个单项式的符号问题,使学生引起注意。
练习:下列代数式 , , , , , , , , 中,是多项式的有:
___________________________________________________________.
学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论。
【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识。多项式的概念是本节教学重�
师:提出问题,多项式 、 , , 各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正。
师:在 中,是两个单项式相加得到,就叫做二项式,两个单项式中, 次数是1, 次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式。
学生活动:同桌讨论, , , ,应怎样称谓,然后找学生回答。
师:给予归纳,并做适当板书:
学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答。
根据学生回答,师归纳:
在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式。每一项包含它的符号,如 这一项不是 .多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项。
【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力。
师:提出问题:对于多项式 是几次几项式呢?多项式的项数,各单项式的次数以及各项字母的指数各是多少呢?
学生活动:讨论 (学生应都能准确回答)
师归纳:各项字母的指数,发现多项式的排列是按照字母b的升幂来排列。指出多项式的表达必须按照某个字母的升幂或降幂来排列的。
则 还可以表示为 ,还有吗?
学生活动:小组讨论并展示各组的成果。
三、应用新知,解决问题
1、填表:
2、填空:
(1) 是___次___项式; 是___次____项式; 的常数项是___________.
(2) 是____次____项式,最高次数是_______,最高次项的系数是______,常数项是_______.
3、将下列多项式按照某个字母的升幂,降幂来排列。
学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正。
【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病。2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言。
归纳:单项式和多项式�
说明:教师边小结边板书出多项式、单项式,然后再提出它们�
四、应用拓展
1、下列各代数式:0, , , , , , 中,单项式有__________,多项式有____________,整式有_____________.
学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏
【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系。
2、单项式 , , 的和_________,它是____次_____项式。
3、 是_____次____项式, 是____次____项式,它的常数项_________.
4、 是_____次_____项式,最高次项是_______,最高次项的系数是_______,常数项是________.
5、 的2倍与 的平方的 的和,用代数式表示__________,它是__________(填单项式或多项式).
学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言。
师:做肯定或否定,强调3题中最高次项的系数是 , 是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的。
【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对 这个数字要有一个明确的认识。
6、自编题目练习:
每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确。
【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力。
师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式。
学生活动:学生边回答师边板书,然后学生讨论是否符合要求。
【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力。
五、归纳小结
学生归纳,教师点评
“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数。前面我们还学习了单项式,掌握单项式时要注意它的系数和次数。
第二课时作业设计
1.判断题
(1)-5不是多项式( )
(2) 是二次二项式( )
(3) 是二次三项式( )
(4) 是一次三项式( )
(5) 的最高次项系数是3( )
2.填空题
(1)把上列代数式分别填在相应的括号里
, , ,0, , ,
; ;
; ;
.
(2)如果代数式 是关于 的三次二项式则 , .
3、把下列各整式填入相应的圈里:
2m,xy3+1,2ab+6,ax2+bx+c,a,
单项式 多项式
4、下列多项式分别有几项?每项的系数和次数分别是多少?
(1) (2)
5、多项式 是 次 项式,最高次项是 ,常数项是 ,按字母y的降幂排列为 。
6、下列运算中,错误的是( )。
A. B.
C. D.
7、 是 次 项式,其中最高次项的系数是 。多项式2x2-3x+1是 次 项式。
8、多项式1-x3+x2是 ( )
A.二次三项式 B.三次三项式 C.三次二项式 D.五次三项式
9、多项式x3-2x2y-xy2-1的最高次项是 ( )
A.x3 B.2x2y C.-xy2 D.x3,-2x2y,-xy2
10、52x2-x是 ( )
A.一次二项式 B.二次二项式
C.四次二项式 D.五次二项式
11、多项式3xy2-2x2y+x3y3中,按x的指数从大到小各项依次是 ,按y的指数从小到大各项依次是________
12、当a= ,b= 时, 是关于x、y的三次二项式
13、若x+y=3 ,则4-2x-2y = 。
14、一个关于字母x、y的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?你能写出符合要求的一个多项式吗?
教学目的:
(一)知识点目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:
知道什么是正数和负数,理解数0表示的量的意义。
教学难点:
理解负数,数0表示的量的意义。
教学方法:
师生互动与教师讲解相结合。
教具准备:
地图册(中国地形图)。
教学过程:
引入新课:
1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?
内容:老师说出指令:
向前两步,向后两步;
向前一步,向后三步;
向前两步,向后一步;
向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的。0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)
-3、-2、-0.5、-等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。
巩固提高:练习:课本P5练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1的第1、2、4、5题。
活动与探究:在一次数学测验中,X班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少?
(2)多多被记作一12分,他实际得分是多少?
教学目标
【知识与能力目标】
1、巩固理解有理数的概念;
2、掌握数轴的意义及构成特点,明确其在实际中的应用;
3、会用数轴上的点表示有理数。
教学重难点
【教学重点】
数轴的意义及作用。
【教学难点】
数轴上的点与有理数的直观对应关系。
课前准备
《数学》人教版七年级上册,自制课件
教学过程
一、探索新知(投影展示)
问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:
1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?
2、举例说明生活中类似的事例;
3、什么叫数轴?它有哪几个要素组成?
4、数轴的用处是什么?
5、你会画数轴吗并应用它吗?
二、例题分析
三、巩固训练
课本p10练习
自我检测
(1)数轴的三要素是;
(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;
(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;
(4)如图,a、b为有理数,则a0,b0,ab
四、课堂小结
(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。
(2)数轴的三要素:原点、正方向、单位长度。
(3)数学思想:数形结合的思想。
五、作业
1、课本14页习题1、2
2、完成“自我检测”
3、个性补充
⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。
⑵画一条数轴,并表示出如下各点:1000,5000,-2000。
⑶在数轴上标出到原点的距离小于3的整数。
⑷在数轴上标出-5和+5之间的所有整数。
垂线
[教学目标]
1、 理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2、 掌握点到直线的距离的概念,并会度量点到直线的距离。
3、 掌握垂线的性质,并会利用所学知识进行简单的推理。
[教学重点与难点]
1、教学重点:垂线的定义及性质。
2、教学难点:垂线的画法。
[教学过程设计]
一。 复习提问:
1、 叙述邻补角及对顶角的定义。
2、 对顶角有怎样的性质。
二。新课:
引言:
前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。
(一)垂线的定义
当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图,直线AB、CD互相垂直,记作 ,垂足为O。
请同学举出日常生活中,两条直线互相垂直的实例。
注意:
1、 如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
2、掌握如下的推理过程:(如上图)
反之,
(二)垂线的画法
探究:
1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?
2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?
3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?
画法:
让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
(三)垂线的性质
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
性质1 过一点有且只有一条直线与已知直线垂直。
练习:教材第7页
探究:
如图,连接直线l外一点P与直线l上各点O,
A,B,C,……,其中 (我们称PO为点P到直线
l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?
性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成: 垂线段最短。
(四)点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
如上图,PO的长度叫做点 P到直线l的距离。
例1
(1)AB与AC互相垂直;
(2)AD与AC互相垂直;
(3)点C到AB的垂线段是线段AB;
(4)点A到BC的距离是线段AD;
(5)线段AB的长度是点B到AC的距离;
(6)线段AB是点B到AC的距离。
其中正确的有( )
A. 1个 B. 2个
C. 3个 D. 4个
解:A
例2 如图,直线AB,CD相交于点O,
解:略
例3 如图,一辆汽车在直线形公路AB上由A
向B行驶,M,N分别是位于公路两侧的村庄,
设汽车行驶到点P位置时,距离村庄M最近,
行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。
练习:
1、
2、教材第9页3、4
教材第10页9、10、11、12
小结:
1、 要掌握好垂线、垂线段、点到直线的距离这几个概念;
2、 要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;
3、 垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。
作业:教材第9页5、6.
一、教学目标:
通过观察生活中的大量物体,认识基本的几何体,数学教案-北师大版数学(七年级上)新教材教案 生活中的图形(一)。
经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。
二、教学过程:
1、引入:
(1)幻灯投影P2的彩图,利用现实生活的背景让学生说出熟悉的几何体(如球体、长方体、正方体等)
(2)展出圆柱、圆锥、正方体、棱柱、球的模型,让学生分别说出这几种几何体的名称。
2、过程:
(1)组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。
(2)组织学生分组讨论棱柱、圆锥的共同点与异同点,老师巡场指导。
(3)学生回答问题。老师鼓励学生大胆说出自己的答案,并对每一种答案再交由学生共同讨论它的正确性。
(4)幻灯演示,棱柱的两种类型:直棱柱与斜棱柱,一般棱柱仅指直棱柱。
(5)组织学生讨论
如何对以上几何体进行分类:
1)按底面
2)按侧面
学生上台动手将这几种几何体进行分类,老师让学生试着说明归类的理由是什么?无论学生说什么老师都应用鼓励的目光让学生说出自己的答案。
3、议一议:
投影P3的图片让学生感知这是现实生活中的一角,可能是书房的一角可能是教室的一角,让学生分组讨论:
(1)、上图中哪些物体的形状与长方体、正方体类似?
(学生在回答桌面时老师应指出桌面是指整个层面)
(2)上图中哪些物体的'形状与圆柱、圆锥类似?挂篮球的网袋是否类似于圆锥?为什么?
(3)请找出上图中与笔筒形状类似的物体?
(4)请找出上图中与地球形状类似的物体?
4、想一想:
生活中还有哪些物体的形状类似于棱柱、圆柱、圆锥与球。
5、小结:
与学生总结本节课所学的内容,通过感知不同的物体体验现实生活中原来有如此多的几何体,几何体在我们的生活中无处不在。我们也学会简单地区别不同的物体。
6、作业:
P4习题
总时:1时
第1时, 备时间:开学第十五周 上时间:第十六周
一、教学目标: (一)教学知识点
1.与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据。
2 .近似数和有效数字 并按要求取近似数。
3.从统计图中获取信息 并用统计图形象地表示数据。
(二)能力训练要求
1.体会描述较小 数据的方法 进一步发展数感。
2.了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用。
3.能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念。
(三)情感与价值观要求:1.培养学生用数学的意识和信心 体会数学的应用价值。 2.发展学生的创新能力和克服困难的勇气。
二、教学重点:1.感受较小的数据。
2.用科学记数法表示较小的数。
3.近似数和有效数字 并能按要求取近似数。
4.读懂统计图 并能形象、有效地用统计图描述数据。
教学难点:形象、有效地用统计图描述数据。
教学过程:.创设情景 引入新
三。讲授新:请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。
1.哪些数据用科学记数法表示比较方便?举例说明。
2.用科学记数法表示下列各数:
(1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米。
(2)生物学家发现一种病毒的长度约为0.000043毫米;
(3)某种鲸的体重可达136 000 000千克;
(4)20__年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的。发行量为12 500 000枚。
四。时小结:我们这节回顾了以下知识:
1.又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的数据。
2.在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字。
3.又一次欣赏了形象的统计图 并从中获取有用的信息。
(1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象。
(2)从上表中的数据可以看出 河流的河长与流域面积有什么样的联系?
(3)在中国地形图上找出主要河流 �
(1)形象统计图(略)只要合理即可。
(2)从表中的数据看出 河流越长 其流域面积越大。
(3)河流的年径流量与河流所处的位置有关系。
一、教材分析
(一)教材的地位和作用
本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.
(二)教材的重难点
本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.
二、教学目标分析
(一)知识技能目标
1.目标内容
(1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.
(2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.
2.目标分析
(1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.
(2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.
(二)过程目标
1.目标内容
在活动中感受方程思想在数学中的作用,进一步增强应用意识.
2.目标分析
利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.
(三)情感目标
1.目标内容
(1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.
(2) 通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.
2.目标分析
七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.
三、教材处理与教法分析
本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.
四、教学过程分析
(一)教学过程流程图
探究Ⅰ
(二)教学过程Ⅰ
(以探究为主线、形式多样化)
1.问题情境
(1) 多媒体展示有关盈亏的新闻报道,感受生活实际.
(2) 据此生活实例,展示探究Ⅰ,引入新课.
考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.
2.讨论交流
(1) 学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解.
(2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)
(3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.
(4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.
让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.
3.建立模型
(1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.
(2) 学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价.
(3) 师生互动:①两件衣服的进价和为 ;②两件衣服的售价和为 ;③由于进价 售价,由此可知两件衣服的盈亏情况.
(教师及时给出完整的解答过程)
学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验.
4.小结
一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断.
培养学生科学的学习态度与严谨的学习作风.
探究Ⅱ
(三)教学过程Ⅱ
1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.
恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性.
启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:
2.列代数式
费用=灯的售价+电费
电费=0.5×灯的功率(千瓦)×照明时间(时)
在此基础上,用t表示照明时间(小时).要求学生列出代数式表示这两种灯的费用.
节能灯的费用(元):60+0.5×0.011t.
白炽灯的费用(元):3+0.5×0.06t.
分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.
3.特值试探
具体感知
学生分组计算:
t=1000、2000、2500、3000时,这两种灯具的使用费用,填入下表:
时间(小时)
1000
2000
2500
3000
节能灯的费用(元)
白炽灯的费用(元)