七年级上册数学教案11篇

在知识的学习过程中,教师应该为学生提供广阔的可供探讨和交流的空间,这里是爱岗敬业的小编帮家人们收集的七年级上册数学教案11篇,欢迎参考。

七年级上册数学教案 篇1

教学目标

1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处

2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。

3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

教学重点:认识一些基本的'几何体,并能描述这些几何体的特征

教学难点:描述几何体的特征,对几何体进行分类。

教学过程:

一、设疑自探

1.创设情景,导入新课

在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?

2.学生设疑

让学生自己先思考再提问

3.教师整理并出示自探题目

①生活常见的`几何体有那些?

②这些几何体有什么特征

③圆柱体与棱柱体有什么的相同之处和不同之处

④圆柱体与圆锥体有什么的相同之处和不同之处

⑤棱柱的分类

⑥几何体的分类

4.学生自探(并有简明的自学方法指导)

举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?

说说它们的区别

二、解疑合探

1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探

2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类

2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。

三、质疑再探:

说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

四、运用拓展:

1.引导学生自编习题。

请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征

2.教师出示运用拓展题。

(要根据教材内容尽可能要试题类型全面且有代表性)

3.课堂小结

4.作业布置

五、教后反思

七年级数学上册教案 篇2

一、教材分析

(一)教材的地位和作用

本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.

(二)教材的重难点

本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.

二、教学目标分析

(一)知识技能目标

1.目标内容

(1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.

(2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.

2.目标分析

(1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.

(2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.

(二)过程目标

1.目标内容

在活动中感受方程思想在数学中的作用,进一步增强应用意识.

2.目标分析

利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.

(三)情感目标

1.目标内容

(1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.

(2) 通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.

2.目标分析

七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.

三、教材处理与教法分析

本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.

四、教学过程分析

(一)教学过程流程图

探究Ⅰ

(二)教学过程Ⅰ

(以探究为主线、形式多样化)

1.问题情境

(1) 多媒体展示有关盈亏的新闻报道,感受生活实际.

(2) 据此生活实例,展示探究Ⅰ,引入新课.

考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.

2.讨论交流

(1) 学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解.

(2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)

(3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.

(4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.

让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.

3.建立模型

(1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.

(2) 学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的。衣服的进价,另一组计算亏损25%的衣服的进价.

(3) 师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况.

(教师及时给出完整的解答过程)

学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验.

4.小结

一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断.

培养学生科学的学习态度与严谨的学习作风.

探究Ⅱ

(三)教学过程Ⅱ

1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.

恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性.

启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:

2.列代数式

费用=灯的售价+电费

电费=0.5×灯的功率(千瓦)×照明时间(时)

在此基础上,用t表示照明时间(小时).要求学生列出代数式表示这两种灯的费用.

节能灯的费用(元):60+0.5×0.011t.

白炽灯的费用(元):3+0.5×0.06t.

分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.

3.特值试探

具体感知

学生分组计算:

t=1000、20xx、2500、3000时,这两种灯具的使用费用,填入下表:

时间(小时)

1000

20xx

2500

3000

节能灯的费用(元)

白炽灯的费用(元)

人教版七年级上册数学教案 篇3

教学目标

1 知识与技能:

使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

2 过程与方法:

通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

3 情感态度与价值观:

让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

教学重难点

1 教学重点:

掌握用整十数除的口算方法。

2 教学难点:

理解用整十数除的口算算理。

教学工具

多媒体设备

教学过程

1 复习引入

口算。

20×3= 7×50= 6×3=

20×5= 4×9= 8×60=

24÷6= 8÷2= 12÷3=

42÷6= 90÷3= 3000÷5=

2 新知探究

1、教学例1

有80面彩旗,每班分20面,可以分给几个班?

(1)提出问题,寻找解决问题的方法。

师:从中你能获取什么数学信息?

师:怎样解决这个问题?

(2)列式 80÷20

(3)学生独立探索口算的方法

师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

学生汇报:

预设学生可能会有以下两种口算方法:

A.因为20×4=80,所以80÷20=4 这是想乘算除

B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成

为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)

这样我们就把除数是整十数的转化为我们已经学过的表内除法。

(4)师小结:

同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

把你喜欢的方法说给同桌听。

(5)检查正误

师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)

(6)用刚学会的方法再次口算,并与同桌交流你的想法

40÷20 20÷10 60÷30 90÷30

(7)探究估算的方法

出示:83÷20≈ 80÷19≈

师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

师:谁想把你的方法跟大家说一说。

预设:83接近于80,80除以20等于 4,所以83除以20约等于4。

19接近于20,80除以20等于 4,所以80除以19约等于4。

2、教学例2

(1)创设情境引出问题

师:谁会解决这个问题?

150÷50

(2)小组讨论口算方法

(3)你是怎么这样快就算出的呢?

A.因为15÷5=3,所以150÷50=3。

B.因为3个50是150,所以150÷50=3。

这一题跟刚才分彩旗的口算方法有不同吗?

都是运用想乘算除和表内除法这两种方法来口算的。

师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

口算练习:150÷30 240÷80 300÷50 540÷90

3、估算

(1)探计估算的方法

师:你能知道题目要求我们做什么吗?

你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

(2)谁想把你的方法跟大家说一说。

(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

(4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?

3 巩固提升

1、独立口算

观察每道题,怎样很快说出下面除法算式的商?

如果估算的话把谁估成多少。

2、算一算、说一说。

(1)除数不变,被除数乘几,商也乘几。

(2)被除数不变,除数乘几,商反而除以几。

3、解决问题

(1)一共要寄240本书,每包40本。要捆多少包?

你能找到什么条件、问题。你会解决吗?

240÷40 = 6(包)

答:要捆6包。

(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

出示条件:一共有120个小故事,每天看1个故事。

问题:看完这本书大约需要几个月?

问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

120÷30 = 4(个)

答:看完这本书大约需要4个月。

课后小结

这节课你有什么收获?还有什么问题?

本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

板书

口算除法

有80面彩旗,每班分20面,可以分给几个班?

80÷20=

七年级上册数学教学教案 篇4

教学目标

知识与技能:

1.会求代数式的值,会利用代数式求值判断代数式所反应的规律;

2.能利用求代数式的值解决较简单的实际问题;

过程与方法:

3.通过求代数式的值,体会代数式实际上是由计算程序反映的一种数量间的关系;

4.将不同的数代入同一代数式,求出相应的值,能够从所得代数式的值来判断代数式所反映的规律,体会抽象的代数式与实际数量关系之间的关系。

情感态度价值观:

5.通过代数式求值,感受数学中的程序化和抽象性,感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,进一步增强符号感。

教学重点

理解代数式的意义,会求代数式的值

教学难点

利用代数式求值推断代数式所反映的规律

教学方法

引导、探究法,即引导学生发现规律,使其在探究过程中掌握知识

教学准备

多媒体,或投影仪,胶片

课时安排

1课时

教学过程

Ⅰ.巧设情景问题,引入课题

[师]我们在探讨了代数式之后,不仅能用字母与代数式表示数量关系,还能解释一些代数式的实际背景或几何意义。

下面我们来看一组数值转换机:(出示投影片§3.3A),大家想一想,做一做。

下面是一组数值转换机,写出图1的输出结果,找出图2的转换步骤:

[生1]图1的输出结果是:6x-3.

图2的转换步骤:-3、×6.

[师]这位同学书写的跟你们的一样吗?

[生齐声]一样。

[师]很好,同学们写得很正确,这两个数值转换机由于转换的步骤不一样,因此输出的代数式也不一样。

我们已经知道,表示数的字母具有任意性和确定性。当给出代数式时,如:6x-3,字母x可以取任何有理数,当给出未知数的值时,如x=5时,求6x-3的值,这时,x只能是5这个确定的数。

今天我们就来研究第三节:代数式求值。

Ⅱ.讲授新课

当我们把一些数输入“数值转换机”时,通过一个算法,相应得就会得到一些数值。下面大家来做一做,填下表。(出示投影片§3.3B)

输入-2-

00.26

4.5

图1输出

图2输出

(学生计算,使他们认识到代数式求值就是转换过程或是某种计算).

[师]大家在运算时一定要注意:要按转换的步骤进行。填出结果了吗?……来同桌间相互检查。__同学说说你的结果。

[生]

[师]同学们做得都不错,很好,下面,我们来比赛一下,看谁做得又对又快。(出示投影片§3.3C)

议一议:

填写下表,并观察下列两个代数式的值的变化情况:

(1)随着n的值逐渐变大,两个代数式的值如何变化?

(2)估计一下,哪个代数式的值先超过100?

(学生积极发言,大多同学填得对)

[生]

[师]很好,大家计算得又对又快,接下来我们分组讨论:(1)、(2)问题,并总结。

[生]随着n的值逐渐变大,两个代数式的值也逐渐变大。

根据值的变化趋势,我估计:n2的值先超过100.

[师]对,代数式的值是由其所含的字母取值所确定的,并随字母取值的变化而变化,字母取不同的值,代数式的值可能不同,也可能相同。求出代数式的值后,根据值的变化趋势还可以进行预测、推断代数式所反映的规律。

下面我们来做练习,进一步体会本节课的内容:

Ⅲ.课堂练习

(一)课本P99随堂练习

1.人体血液的质量约占人体体重的6%~7.5%.

(1)如果某人体重是a千克,那么他的血液质量大约在什么范围内?

(2)亮亮的'体重是35千克,他的血液质量大约在什么范围内?

(3)估计你自己的血液质量?

答案:(1)6%a千克~7.5%a千克

(2)亮亮的血液质量大约在2.1千克到2.625千克之间

(3)让学生估计计算一下

2.物体自由下落的高度h(米)和下落时间t(秒)的关系,在地球上大约是:

h=4.9t2,在月球上大约是:h=0.8t2.

(1)填写下表

(2)物体在哪儿下落得快?

(3)当h=20米时,比较物体在地球上和月球上自由下落所需的时间。

答案:(1)

(2)地球

(3)通过表格,估计当h=20米时,t(地球)≈2秒,t(月球)≈5秒

(二)试一试

1.当a=-1,-0.5,0,0.5,1,1.5,2时,a2-a是正数还是负数?当|a|>2时,估计a2-a是正数还是负数?

解:本题可列表进行比较。

通过估计得:当|a|>2时,a2-a>0

2.当a=-4,-3,-2,-1,1,2,3,4时,分别求出代数式a2+的值。你发现了什么?

解:

从计算的结果中发现:当a取互为相反数的值时,a2+的值相等;当|a|>1时,a的绝对值变大,a2+的值也变大。

Ⅳ.课时小结

通过本节课的学习,我们会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值,一般也不同,所以在求代数式的值时,要注意解题步骤:(1)代入。

(2)计算。

Ⅴ.课后作业

(一)看课本P98;P99的读一读。

(二)课本习题3.31、2、3、4.

(三)(1)预习内容:P102~103

(2)预习提纲

1.项的系数和项的概念。

2.进一步理解字母表示数的意义。

Ⅵ.活动与探究

1.下面是两个数值转换机,请你输入五组数据,比较两个输出的结果,发现了什么?

根据上题的启示,你能设计出两个数值转换机来验证:a2-2ab+b2=(a-b)2吗?

过程:让学生根据题意,求代数式的值。然后讨论、总结,最后根据总结的规律与等式a2-2ab+b2=(a-b)2进行比较,设计两个数值转换机。

结果:通过输入数值,进行计算,发现了两个输出的结果相等,即:

a2+b2+2ab=(a+b)2

根据上题的启示,设计出如下的两个数值转换机,使得:a2-2ab+b2=(a-b)2.

2.已知=7,求的值。

过程:让学生审清题,不要盲目计算。从题中知:与正好是互为倒数,整体代入,问题可轻松解决。

结果:因为=7,所以:=.

所以:原式=2×7-×=13.

板书设计

§3.3代数式求值

一、“数值转换机”求值三、课堂练习

二、议一议

四、课时小结

规律五、课后作业

七年级数学上册教案 篇5

教学目标:

1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形

2、在操作活动中认识棱柱的某些特性;

3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;

教学重点:

通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法

教学难点:

根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。

教学过程:

一、导入情境

让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。

二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的性质做一做

活动一:

1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的`形式动手做做看。

2、操作完后,请学生展示他们制作的模型。

3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。

4、教师介绍棱柱的各部分名称。

七年级数学上册教案 篇6

一、目标

1.用它们拼成各种形状不同的四边形,并计算它们的周长。

(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的`周长和面积)

2.教师揭示以上这些工作实际上是在进行整式的加减运算

3.回顾以上过程 思考:整式的加减运算要进行哪些工作?

生1:“去括号”

生2:“合并同类项”

师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,

二、揭示如何进行整式的加减运算

1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差。

(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)

解:(2a2-4a+1)-(-3a2+2a-5)

=2a2-4a+1+3a2-2a+5

=5a2-6a+6

3.拓展练习

(1)求多项式2x -3 +7与6x -5 -2的和。

提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)

(2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)

(4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)

4.教学例3

先化简下式,再求值:

(做此类题目应先与学生一起探讨一般步骤:

(1)去括号。

(2)合并同类项。

(3)代值)

解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3

=15a2b –5ab2+4ab2 -12a2b)

=3a2b –ab2

三、小结

1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

2.进行化简求值计算时

(1)去括号。

(2)合并同类项。

(3)代值

3.通过本节课的学习你还有哪些疑问?

四、布置作业

习题4.5 2. (3) ;4. (2);5.。

五、课后反思

省略

七年级上册数学教学教案 篇7

教学目的:

(一)知识点目标:

1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:

知道什么是正数和负数,理解数0表示的`量的意义。

教学难点:

理解负数,数0表示的量的意义。

教学方法:

师生互动与教师讲解相结合。

教具准备:

地图册(中国地形图)。

教学过程:

引入新课:

1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?

内容:老师说出指令:

向前两步,向后两步;

向前一步,向后三步;

向前两步,向后一步;

向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1、自然数的产生、分数的产生。

2、章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)

-3、-2、-0.5、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。

巩固提高:练习:课本P5练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题1.1的第1、2、4、5题。

活动与探究:在一次数学测验中,__班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

初一数学上册的教案 篇8

一、教学目标:

1.知识目标:

使学生理解同类项的概念和合并同类项的意义,学会合并同类项。

2.能力目标:

培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。

3.情感目标:

借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。

二、教学重点、难点:

重点:同类项的概念和合并同类项的法则

难点:合并同类项

三、教学过程:

(一)情景导入:

1、观察下面的图片,并将这些图片分类:

你是依据什么来进行分类的'呢?

生活中,我

2、对下列水果进行分类:

(二)新知探究1:

1、对下列八个单项式进行分类:

a,6_2,5,cd,-1,2_2,4a,-2cd

这些被归为同一类的项有什么相同的特征?

2、揭示同类项的概念。

同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。

《3.4合并同类项》同步练习

1.已知代数式2a3bn+1与-3am-2b2是同类项,则2m+3n=________.

2.若-4_ay+_2yb=-3_2y,则a+b=_______.

3.下面运算正确的是( )

A.3a+2b=5ab B.3a2b-3ba2=0

C.3_2+2_3=5_5 D.3y2-2y2=1

4.已知一个多项式与3_2+9_的和等于3_2+4_-1,则这个多项式是( )

A.-5_-1 B.5_+1

C.-13_-1 D.13_+1

《3.4合并同类项》测试

1.下列说法中,正确的是( )

A.字母相同的项是同类项

B.指数相同的项是同类项

C.次数相同的项是同类项

D.只有系数不同的项是同类项

七年级上册数学教案 篇9

教学目标和要求:

1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

教学重点和难点:

重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

教学方法:

分层次教学,讲授、练习相结合。

教学过程:

一、复习引入:

1、 列代数式

(1)若正方形的边长为a,则正方形的面积是 ( )

(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为( )

(3)若x表示正方形棱长,则正方形的体积是( )

(4)若m表示一个有理数,则它的相反数是( )

(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 ( ) 元。

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)

2、 请学生说出所列代数式的意义。

3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)

二、讲授新课:

1.单项式:

通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。

2.练习:判断下列各代数式哪些是单项式?

(1)abc; (2)b2; (3)-5ab2; (4)y; (5)-xy2; (6)-5。

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

3.单项式系数和次数:

直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。

概念:

单项式的系数:单项式中的数字因数。

单项式的次数:在单项式中,所有字母的指数之和。

4.例题:

例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。

①x+1; ② ; ③πr2; ④-ab。

答:①不是,因为原代数式中出现了加法运算;

②不是,因为原代数式是1与x的商;

③是,它的系数是π,次数是2;

④是,它的系数是-1,次数是3。

例2:下面各题的判断是否正确?

①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab3c2的次数是0+3+2;

④-a3的系数是-1; ⑤-32x2y3的次数是7; ⑥πr2h的系数是。

通过其中的反例练习及例题,强调应注意以下几点:

①圆周率π是常数;

②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;

③单项式次数只与字母指数有关。

5.游戏:

规则:一个小组学生说出一个单项式,然后指定另一个小组的`学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。

(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)

6.课堂练习:课本p56:1,2。

三、课堂小结:

①单项式及单项式的系数、次数。

②根据教学过程反馈的信息对出现的问题有针对性地进行小结。

③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。

四、作业布置:

课本p59:1,2。

2.1第2课时整式

教学内容

1、 多项式、整式的有关概念

2、正确区分单项式和多项式

教学目标

1、知识与技能

(1)学生理解多项式的概念。

(2)使学生能准确地确定一个多项式的次数和项数。

(3)能正确区分单项式和多项式。

2、过程与方法

通过区别单项式与多项式,培养学生发散思维。

3、情感、态度与价值观

在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想。

教学重、难点

1.重点:多项式的概念及单项式的联系与区别。

2.难点及关键:多项式的次数的确定,多项式中各项的符号问题,以及多项式与单项式的联系与区别。

教学过程

一、创设情境,导入新课

师:上节课我们学习了单项式的有关概念,同学们看下面一些问题。

1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数。

, , ,2, , ,

2.圆的半径为 ,则半圆的面积为_____________,半圆的总长为_____________.

学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励。

【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为 很自然地引出本节内容。

师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?

学生活动:同座进行讨论,然后选代表回答。

师:谁能把1题中不是单项式的式子读出来?(师做相应板书)

学生活动:小组讨论, 、 , , 对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充。

二、探索新知

师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式。

学生活动:讨论归纳什么叫多项式。可让学生互相补充。

教师概括并板书

多项式:几个单项式的和叫多项式。

师:强调每个单项式的符号问题,使学生引起注意。

练习:下列代数式 , , , , , , , , 中,是多项式的有:

___________________________________________________________.

学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论。

【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识。多项式的概念是本节教学重�

师:提出问题,多项式 、 , , 各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正。

师:在 中,是两个单项式相加得到,就叫做二项式,两个单项式中, 次数是1, 次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式。

学生活动:同桌讨论, , , ,应怎样称谓,然后找学生回答。

师:给予归纳,并做适当板书:

学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答。

根据学生回答,师归纳:

在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式。每一项包含它的符号,如 这一项不是 .多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项。

【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力。

师:提出问题:对于多项式 是几次几项式呢?多项式的项数,各单项式的次数以及各项字母的指数各是多少呢?

学生活动:讨论 (学生应都能准确回答)

师归纳:各项字母的指数,发现多项式的排列是按照字母b的升幂来排列。指出多项式的表达必须按照某个字母的升幂或降幂来排列的。

则 还可以表示为 ,还有吗?

学生活动:小组讨论并展示各组的成果。

三、应用新知,解决问题

1、填表:

2、填空:

(1) 是___次___项式; 是___次____项式; 的常数项是___________.

(2) 是____次____项式,最高次数是_______,最高次项的系数是______,常数项是_______.

3、将下列多项式按照某个字母的升幂,降幂来排列。

学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正。

【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病。2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言。

归纳:单项式和多项式�

说明:教师边小结边板书出多项式、单项式,然后再提出它们�

四、应用拓展

1、下列各代数式:0, , , , , , 中,单项式有__________,多项式有____________,整式有_____________.

学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏

【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系。

2、单项式 , , 的和_________,它是____次_____项式。

3、 是_____次____项式, 是____次____项式,它的常数项_________.

4、 是_____次_____项式,最高次项是_______,最高次项的系数是_______,常数项是________.

5、 的2倍与 的平方的 的和,用代数式表示__________,它是__________(填单项式或多项式).

学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言。

师:做肯定或否定,强调3题中最高次项的系数是 , 是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的。

【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对 这个数字要有一个明确的认识。

6、自编题目练习:

每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确。

【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力。

师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式。

学生活动:学生边回答师边板书,然后学生讨论是否符合要求。

【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力。

五、归纳小结

学生归纳,教师点评

“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数。前面我们还学习了单项式,掌握单项式时要注意它的系数和次数。

第二课时作业设计

1.判断题

(1)-5不是多项式( )

(2) 是二次二项式( )

(3) 是二次三项式( )

(4) 是一次三项式( )

(5) 的最高次项系数是3( )

2.填空题

(1)把上列代数式分别填在相应的括号里

, , ,0, , ,

; ;

; ;

.

(2)如果代数式 是关于 的三次二项式则 , .

3、把下列各整式填入相应的圈里:

2m,xy3+1,2ab+6,ax2+bx+c,a,

单项式 多项式

4、下列多项式分别有几项?每项的系数和次数分别是多少?

(1) (2)

5、多项式 是 次 项式,最高次项是 ,常数项是 ,按字母y的降幂排列为 。

6、下列运算中,错误的是( )。

A. B.

C. D.

7、 是 次 项式,其中最高次项的系数是 。多项式2x2-3x+1是 次 项式。

8、多项式1-x3+x2是 (    )

A.二次三项式 B.三次三项式 C.三次二项式 D.五次三项式

9、多项式x3-2x2y-xy2-1的最高次项是 (    )

A.x3 B.2x2y C.-xy2 D.x3,-2x2y,-xy2

10、52x2-x是 (     )

A.一次二项式     B.二次二项式

C.四次二项式    D.五次二项式

11、多项式3xy2-2x2y+x3y3中,按x的指数从大到小各项依次是 ,按y的指数从小到大各项依次是________

12、当a= ,b= 时, 是关于x、y的三次二项式

13、若x+y=3 ,则4-2x-2y = 。

14、一个关于字母x、y的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?你能写出符合要求的一个多项式吗?

七年级上册初中数学教案 篇10

一:教材分析:

1:教材所处的地位和作用:

本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣

以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

2:教育教学目标:

(1)知识目标:

(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。

(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。

(3)思想目标:

通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3:重点,难点以及确定的依据:

根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。

二:学情分析:(说学法)

1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

2:学生在列方程解应用题时,可能存在三个方面的困难:

(1)抓不准相等关系;

(2)找出相等关系后不会列方程;

(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

三:教学策略:(说教法)

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1:“读(看)——议——讲”结合法

2:图表分析法

3:教学过程中坚持启发式教学的原则

教学的理论依据是:

1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。

2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有_千克面粉”写成“设原来有_”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“_ 字串7 ”“—15%_”“42500”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。

3:针对学生在列方程解应用题中可能存在的三个方面的困难,在教学过程中有意识加以解决,特别是学生抓不准相等关系这方面,可以让学生通过表格,图表等形式帮助学生找出相等关系表示成方程。如例1在分析过程中通过表格让学生明了清楚直观解决列方程的难点。

4:通过图表对比使学生更直观,理解更深刻,同时,降低了理论教学的难度和分量,提高课堂教学效益(教学手段)。

5:在课后习题的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,这主要由于学生刚刚入门,多进行模仿,习惯以后,再做与例题不一样的习题,可以提高运用知识能力,同时让学生进行一题多解,找出共同点,区别或最佳列法,以开阔学生的思路。

四:教学程序:

(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业五个部分。

(二):教学简要过程:

1:复习提问:

(1):什么叫做等式?

(2):等式与方程之间有哪些关系?

(3):求_的15%的代数式。

(4):叙述代数式与方程的区别。

(理由是:通过复习加深学生对等式,方程,代数式之间关系的理解,有利于学生熟练正确根据题意列出一元一次方程,从而有利降低本节的难度。)

2:导入讲授新课:

(1):教具:

一块小黑板,抄212例1题目及相对应的空表格。

左边右边

(2):新课引述:

(3):讲述课文212例1:

(目的是:要求学生认真读懂题目,寻找反映题目的全部含义的相等关系,必须根据题目关系,切勿盲目性)通过理解启发学生寻找出以下关系:原来重量—运出重量=剩余重量(A)(在指导学生分析寻找题意相等关系时,可能存在学生分析问题思路不同,会找出如下关系:原来重量=运出重量+剩余重量,原来重量—剩余重量=运出重量的相等关系来,这主要由于学生思路不同,得出的关系表面不同,但思路是正确的,应加以鼓励培养学生这种发散思维能力。)

指导学生设原来重量为_千克。这里分析等式左边:原来重量为_千克,运出重量为15%_千克,把以上填入表格左边。 字串7 分析等式右边:剩余重量为42500千克,填入表格右边。

(目的是:通过分析使学生易看出,先弄懂题意,找出相等关系,再按照相等关系来设未知数和列代数式,有利于降低列方程解应用题的难度)

把以上左边和右边的代数式分别代入(A)中,同时要求学生注意方程的左边和右边的单位要一致,就可以列出方程。

同时要求学生在解答过程中勿漏写“答”和“设”,且都不要漏写单位。

结合解题过程向学生介绍一元一次应用题解法的一般步骤:

课本215黑体字

3:课堂练习:

课文216练习1,2题

(目的是:让学生通过适当的模仿例题的解题思想方法从而加深对本课的内容的理解掌握。)

4:新课巩固:

学生对本节内容进行要小结:

列方程解应用题着重于分析,抓住寻找相等关系。解一元一次应用题的一般步骤及注意事项。

(目的:让学生加深对应用题的解法的认识和该注意事项的重视。)

5:作业布置:

课文221习题4-4(1)A组1,2,3题

(目的:在于检验学生对本节内容的理解和运用程度,以及实际接受情况,并促使学生进一步巩固和掌握所学的内容。)

五:板书设计:

4_4一元一次方程的应用:

例题:小黑板出示例1题目解:设原来有_千克面粉,那么运

相等关系:原来重量—运出重量=剩余重量出了15%_千克,依题意,得

等式左边:等式右边:_—15%_=42500

原来重量为_千克,剩余重量为42500千克。解这个方程:

运出重量为15%_千克。85/100__=42500

解一元一次方程的一般步骤:_=50000(千克)

小黑板出示课文215黑体字内容提要答:原来有50000千克面粉。

七年级上册数学教学教案 篇11

总时:1时

第1时, 备时间:开学第十五周 上时间:第十六周

一、教学目标: (一)教学知识点

1.与身边熟悉的 事物做比较 感受百万分之一等较小的数据 并用科学记数法表示较小的数据。

2 .近似数和有效数字 并按要求取近似数。

3.从统计图中获取信息 并用统计图形象地表示数据。

(二)能力训练要求

1.体会描述较小 数据的方法 进一步发展数感。

2.了解近似数和有效数字的概念 能按要求取近似数 体会近似数的意义在生活中的作用。

3.能读懂统计图中的信息 并能收集、整理、描述和分析数据 有效、形象地用统计图描述数据 发展统计观念。

(三)情感与价值观要求:1.培养学生用数学的意识和信心 体会数学的应用价值。 2.发展学生的创新能力和克服困难的勇气。

二、教学重点:1.感受较小的数据。

2.用科学记数法表示较小的数。

3.近似数和有效数字 并能按要求取近似数。

4.读懂统计图 并能形象、有效地用统计图描述数据。

教学难点:形象、有效地用统计图描述数据。

教学过程:.创设情景 引入新

三。讲授新:请你用熟悉的事物描述 一些较小的数据:大象是世界上最大的陆栖动物 它的体重可达几吨。世界第一高峰——珠穆朗玛峰 它的海拔高度约为8848米。

1.哪些数据用科学记数法表示比较方便?举例说明。

2.用科学记数法表示下列各数:

(1)水由氢原子和氧原子组成 其中氢原子的直径约为0.000 000 0001米。

(2)生物学家发现一种病毒的长度约为0.000043毫米;

(3)某种鲸的体重可达136 000 000千克;

(4)20__年5月19日 国家邮政局特别发行“万众一心 抗击‘非典’”邮票 收入全部捐给 卫生部门 用以支持抗击“非典”斗争 其邮票的。发行量为12 500 000枚。

四。时小结:我们这节回顾了以下知识:

1.又一次经 历感受 了百万分之一 进一步体会描述较小数据的方法:与身边事物比较 进一步学习了利 用科学记数法表示较小的数据。

2.在实际情景中进一步体会到了近似 数的意义和作用 并按要求取近似数和有效数字。

3.又一次欣赏了形象的统计图 并从中获取有用的信息。

(1)根据上表中的数据 制作统计图表示这些主要河流的河长情况 你的统计图要尽可能的形象。

(2)从上表中的数据可以看出 河流的河长与流域面积有什么样的联系?

(3)在中国地形图上找出主要河流 �

(1)形象统计图(略)只要合理即可。

(2)从表中的数据看出 河流越长 其流域面积越大。

(3)河流的年径流量与河流所处的位置有关系。

一键复制全文保存为WORD
相关文章