作为一名人民教师,常常要根据教学需要编写教案,教案是教学活动的总的组织纲领和行动方案。那么什么样的教案才是好的呢?这次漂亮的小编为您带来了七年级数学公开课教案【优秀7篇】,希望可以启发、帮助到大家。
教学目标:
1、会用待定系数法求反比例函数的解析式。
2、通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义。
3、会通过已知自变量的值求相应的反比例函数的值。运用已知反比例函数的值求相应自变量的值解决一些简单的问题。
重点:用待定系数法求反比例函数的解析式。
难点:例3要用科学知识,又要用不等式的知识,学生不易理解。
教学过程:
一。复习
1、反比例函数的定义:
判断下列说法是否正确(对‖√‖,错‖3‖)
(1)一矩形的面积为20cm2,相邻的两条边长分别为x(cm)和y(cm),变量y是变量x的反比例函数。(2)圆的面积公式s??r2中,s与r成正比例。(3)矩形的长为a,宽为b,周长为C,当C为常量时,a是b的反比例函数。方形的边长为x,高为y,当其体积V为常量时,y是x的反比例函数。(4)一个正四棱柱的底面正
定时,商和除数成反比例。(5)当被除数(不为零)一
(6)计划修建铁路1200km,则铺轨天数y(d)是每日铺轨量x(km/d)的反比例函数。
2、思考:如何确定反比例函数的解析式?
(1)已知y是x的反比例函数,比例系数是3,则函数解析式是_______
(2)当m为何值时,函数4是反比例函数,并求出其函数解析式.y?2m?2关键是确定比例系数!x
二。新课
1、例2:已知变量y与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式和自变量的取值范围。小结:要确定一个反比例函数y?k的解析式,只需求出比例系数k。如果已知一对自变量与函数的对应值,x
3时,y=2,求这个函数的解析式和自变量的取值范围。4就可以先求出比例系数,然后写出所要求的反比例函数。2.练习:已知y是关于x的反比例函数,当x=?
3、说一说它们的求法:
(1)已知变量y与x-5成反比例,且当x=2时y=9,写出y与x之间的函数解析式。
(2)已知变量y-1与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式。
4、例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为I(A)。
(1)已知一个汽车前灯的电阻为30Ω,通过的电流为0.40A,求I关于R的函数解析式,并说明比例系数的实际意义。
(2)如果接上新灯泡的电阻大于30Ω,那么与原来的相比,汽车前灯的亮度将发生什么变化?
在例3的教学中可作如下启发:
(1)电流、电阻、电压之间有何关系?
(2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?
(3)前灯的亮度取决于哪个变量的大小?如何决定?
先让学生尝试练习,后师生一起点评。
三。巩固练习:
1、当质量一定时,二氧化碳的体积V与密度p成反比例。且V=5m3时,p=1.98kg/m3
(1)求p与V的函数关系式,并指出自变量的取值范围。
(2)求V=9m3时,二氧化碳的密度。
四。拓展:
1、已知y与z成正比例,z与x成反比例,当x=-4时,z=3,y=-4.求:
(1)Y关于x的函数解析式;
(2)当z=-1时,x,y的值。
2、已知y?y1?y2,y1与x成正例,y2与x成反比例,并且x?2与x?3时,y的
值都等于10,求y与x之间的函数关系。
五。交流反思
求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例3中的I?
六。布置作业:P4B组
教学目标
1.了解公式的意义,使学生能用公式解决简单的`实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例
一、教学目标
(一)知识教学点
1.使学生能利用公式解决简单的实际问题.
2.使学生理解公式与代数式的关系.
(二)能力训练点
1.利用数学☆☆公式解决实际问题的能力.
2.利用已知的公式推导新公式的能力.
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践.
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.
二、学法引导
1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点
2.学生学法:观察→分析→推导→计算
三、重点、难点、疑点及解决办法
1.重点:利用旧公式推导出新的图形的计算公式.
2.难点:同重点.
3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.
四、教具学具准备
投影仪,自制胶片。
五、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
六、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.
板书: 公式
师:小学里学过哪些面积公式?
板书: S = ah
(出示投影1)。解释三角形,梯形面积公式
【教法说明】让学生感知用割补法求图形的面积。
(二)探索求知,讲授新课
师:下面利用面积公式进行有关计算
(出示投影2)
例1 如图是一个梯形,下底 (米),上底 ,高 ,利用梯形面积公式求这个梯形的面积S。
师生共同分析:
1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?
2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等)
学生口述解题过程,教师予以指正并指出,强调解题的规范性.
【教法说明】
1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.
2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.
(出示投影3)
例2 如图是一个环形,外圆半径 ,内圆半径 求这个环形的面积
学生讨论:
1.环形是怎样形成的.
2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.
评讲时注意
1.如果有学生作了简便计算 ,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.
2.本题实际上是由圆的面积公式推导出环形面积公式.
3.进一步强调解题的规范性
教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.
测试反馈,巩固练习
(出示投影4)
1.计算底 ,高 的三角形面积
2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长 是多少?当 时,求t
3.已知圆的半径 , 求圆的周长C和面积S
4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走 千米,下坡时每小时走 千米。
(1)求A地到B地所用的时间公式。
(2)若 千米/时, 千米/时,求从A地到B地所用的时间。
学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.
七、随堂练习
(一)填空
1.圆的半径为R,它的面积 ________,周长 _____________
2.平行四边形的底边长是 ,高是 ,它的面积 _____________;如果 , ,那么 _________
3.圆锥的底面半径为 ,高是 ,那么它的体积 __________如果 , ,那么 _________
(二)一种塑料三角板形状,尺寸如图,它的厚度是 ,求它的体积V,如果 , , ,V是多少?
八、布置作业
(一)必做题课本第22页1、2、3第23页B组1
(二)选做题课本第22页5B组2
活动目标
1、通过活动感知4以内的数量。
2、学习手口一致地点数并说出总数。
活动准备
春天背景图一张,1个春姑娘,2朵花,3只小鸟,4只小白兔,1―4的数卡,三只礼品盒(内有二个娃娃,三本图书,四只乒乓球);幼儿人手一份1―4的点卡。
活动过程
1、看一看
师:春天到了,春姑娘来了(出示背景图),我们来看一看有几个春姑娘(1个),一个春姑娘的好朋友是数字1(师出示数字1)。花儿也开了,(师出示花)我们来数数有几朵花,要求幼儿手口一致地点数(2朵),2朵花的好朋友是数字2,(师出示数字2),小鸟也飞来了,我们一起来数数有几只小鸟,要求幼儿手口一致地点数(3只),3只小鸟的好朋友是数字3。(师出示数字3),小白兔也到草地上来做游戏了,数数有几只小白兔(4只),要求幼儿手口一致地点数(4只),4只小白兔的好朋友是数字4。(师出示数字4)
2、摸一摸
师出示三只礼品盒:“春姑娘给我们带来了三只礼品盒,请小朋友上来摸一摸盒子里是什么?”。“来;自。屈;老师;教。案;请个别幼儿上来触摸感知,其余幼儿一起验证。
3、动一动
游戏:听音找点卡。
师:老师为小朋友每人准备了一份点子卡片,请小朋友竖起耳朵听仔细,老师拍了几下铃鼓,你们就找出几的点子卡片。
4、结束活动:游戏“老狼老狼几点钟”:
师:当听到‘天黑了’,请小朋友看清老师手里的数字,就找几个好朋友变成石头,这样老狼就不会抓到了。
活动延伸
继续探索教室内、家中4以内的物品,巩固按物数数的方法,并说出总数。
活动反思
《纲要》指出:”幼儿能从生活和游戏中感受事物的数量,并体验到数学的重要和有趣“。数学来源于生活,运用于生活,能感知到事物的数量关系并能手口一致地点数4以内物体的数量,是小班幼儿学习的一个重要目标。本节课我注重从感知入手,结合生活经验,感知4以内的数量,通过游戏使幼儿学习手口一致地点数和按数量匹配相应的实物。
9月29日,我有幸在我的母校xx外语学校听课学习,观摩了几位老师数学优质课,一天的听课学习我收获很大,从几个老师的讲解中,我了解了:新课程理念下的数学教学,强调数学来自于生活,又回归于生活。生活中的数学教学本质是培养学生的应用与创新能力。下面结合自己的教学实际谈谈自己在数学教学实践中的一些做法。
一、教师善于创设情境
教师在教学过程中创设的情境,目标明确,能为教学服务。通过创设情境,让学生感觉数学是有趣的。学生的学习是认知和情感的结合。每一个学生都渴望挑战,渴望挑战带来的成功,这是学生的心理共性。成功是一种巨大的情绪力量,它能使学生产生主动求知的心理冲突,因此,教师在课堂教学中,要有意识地 设各种情境,为学生提供挑战的机会,不失时机地为他们走向成功。
二、教师精心设计了教学课件
教学课件制作精良,充分发挥了多媒体技术在课堂教学中的重要作用,从课题材料的搜集上和视听效果上,都非常富有创意,如花似锦,引人入胜,而且都非常贴近学生生活,做到学数学用数学。体现了数学来源于生活,运用到生活中使枯燥的数学教学变得形象直观,充分激发学生的学习兴趣更有利于学生对所学知识得牢固掌握。
三、教师的教学语言富有感染力
教师的教学语言是至关重要的,不但要有准确的数学专业用语,
让学生听懂理解知识,而且要有些诙谐幽默的话,吸引学生的注意力,使课堂气氛活跃。教师要有及时的课堂评价,随时关注了学生的情感,多表扬来能调动学生学习的积极性。
四、师生互动环节引人入胜,氛围融洽。
在数学教学中,根据学生的心理发展特点,把枯燥、呆板的课堂教学改变了,从而也培养了学生学习数学的兴趣,激发了孩子的求知欲。尤其是在听课过程中,我更加深刻的体会到这些数学教师教学方法的与众不同,我感受到老师和学生之间是如此的默契……看到每个老师都精心的设计每一堂课,从板书、内容,结构紧凑,环环相扣。既学习了新知识,又增加了练习量,还激发了学生大脑思维的深度,那种工作态度与热情都值得我们每个人去学习,在他们的课堂上很少有见到不学习的孩子,因为他们都深深地被老师的课所吸引着。
五、以学生为主体,教师为主导
留给学生充分探索的空间。整堂课教师少讲,甚至不讲,都是学生去发现问题、解决问题、学生帮学生,学生带学生,学生掌握非常快。
整节课老师并没有直接在黑板上讲解、演示做题需要的方法、式子,而是启发学生提出问题,继而让学生估算,再就是让学生用自己的方法独立计算,此环节是重点,体现了学生自主探索的意识,,学生迎刃而解,重点第几种方法,运用知识的转化很轻松地将新知识转化为旧知识,学生掌握的轻松自如。整个过程教师没有挖苦心思、声嘶力竭去讲解,而是在指导学生的钻研过程中通过比较、探索、演示自主学会了新知识。整堂课教师引导得有序、有理、有法,学生经过思考、钻研、整理,整堂课过得轻松、和谐。
六、教学中注重小组合作的学习方式
在教学中要注重加强小组合作学习,提供学生合作、探究、交流的时间与空间,让学生通过明确分工,协调配合,对学习内容进行充分的实践和探究,让学生自己找出答案或规律,培养了学生的合作探究能力,鼓励学生大胆创新与探索在教学中,教师不仅将学生教会,而且还教学生会学,充分体现了探索性的教学过程。
以上是我听数学课的几点心得体。听几位教师的数学优质课,使我亲眼看到他们各自的教学艺术风采,深深地感染了我,鼓舞了我,打动了我的心。通过他们的课堂教学,让我直观的看到老教师在新课改中的模范作用,他们不守旧,与时俱进,认真贯彻新的教学理念、教学方法和教学过程,启迪我在今后的教学中,如何进行课堂教学。
数学是有趣的、是简单的、是鲜活的。这次听课学习活动虽然是短暂的,但是我们的课堂改革以及课程改革是长久,我将积累这次学习活动的经验,将它们应用于以后我自己的数学教学过程中去,努力的做一位优秀的数学教师。
教学目标
1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;
2. 初步培养学生观察、分析和抽象思维的能力。
教学重点和难点
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
课堂教学过程设计
一、从学生原有的认知结构提出问题
1?用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;( -7)
(4)乙数比x大16%?((1+16%)x)
(应用引导的方法启发学生解答本题)
2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?
二、讲授新课
例1 用代数式表示乙数:
(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%?
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?
解:设甲数为x,则乙数的代数式为
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2 用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的 与乙数的 的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?
例3 用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的。数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n; (2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4 设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的 ;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和?
分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)
例5 设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个; (2)( m)m个?
三、课堂练习
1?设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?
2?用代数式表示:
(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数?
3?用代数式表示:
(1)与a-1的和是25的数; (2)与2b+1的积是9的数;
(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数?
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕
四、师生共同小结
首先,请学生回答:
1?怎样列代数式?2?列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?
五、作业
1?用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2?已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积。
学法探究
已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律。
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)
2.4 有理数的加法(优质课教案)
1.经历探索有理数加法法则的过程,理解有理数的加法法则。 2.能熟练进行整数加法运算。 二、教学重点、难点
1.有理数的加法法则 2.异号两数相加 三、教学思路
通过教师的引导,使学生能够对有理数的加法进行一定的分类,从而进一步归纳出有理数的加法法则。 四、教学过程
教 师 活 动学 生 活 动
创设情景问题,引入课题
(1)随着我们认知能力的提升,可以知道,数学是来源于生活,又最终运用到生活中去的一门学科,数学概念的发展就是一个例子。我们引入具有相反意义的量,将数的概念延展到有理数,通过前面的学习易知:要确定一个数,一是符号,二是绝对性
(2)出示幻灯片:我班足球队,第一场比赛赢了1个球,第二场比赛输了1个球,问我班在这两场比赛的净胜球数是多少?答:我班足球队两场比赛的净胜球数是0
(3)我们已经学了用正、负数表示具有相反意义的量,所以一般情况下,遇到具有相反意义的量时,用正、负数比较恰当,当然,方法并不惟一。第一场赢一个记为“+1”,第二场输一个记为“-1”,这时该队的净胜球数为:(+1)+(-1)=0,若该队第一场比赛输1球,第二场比赛赢1球,那么该队这两场比赛的净胜球数是多少?用式子怎样表示?还是零,用式子表示为(-1)+(+1)=0
(4)同学们能否再举出一些生活中具有相反意义的量的加法应用题呢?大家可以开动脑筋想一想学生举例
(5)将学生的例题列出式子写在黑板的一侧略
(6)引出课题:有理数的加法(1)
讲授新课
(1)我们用1个 表示+1,用1个 表示-1,表示0,同样 也表示0,下面我们用摆图的办法来计算 2+3 (-2)+(-3)
下面让一位同学上黑板通过摆图计算(-3)+2, 3+(-2)
学生摆出
(2)很好,谁还能通过摆图计算(-4)+4,(-3)+0学生讲,教师摆
(3)通过摆图,移动可以计算有理数的加法,除此之外,还可以用什么来表示加法运算过程学生回答:数轴
(4)大家开始画数轴,规定以原点为起点,向东为正方向,则向东走一个单位记为“+1”,向西走一个单位记为“-1”。用数轴分别表示出上述六个式子的运算过程。学生一边画,教师一边演示
(5)前面谈到:一个有理数是由符号和绝对值确定的,那么两个有理数相加,和的符号怎么确定?和的绝对值如何确定呢?逐步在教师的引导下提出有理数的加法法则
(6)归纳出有理数的加法法则 1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。有理数加法运算的步骤:(1)确定结果的符号;(2)再进行绝对值的加减。
(7)讲评例题 1、(-15)+5 2、17+6 3、(-8)+18 4、(-4)+(-8) 5、(-9)+2
课堂练习计算 1、(-25)+(-7) 2、(-13)+5 3、(-23)+0 4、45+(-45)学生练
回顾小结有理数的加法法则
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。 有理数加法运算的步骤:(1)确定结果的符号;(2)再进行绝对值的加减。
作业课本第48页,习题2、4
五、教学设计说明
考虑到本节内容概念性较强,采取通过学生熟悉的情景问题来导入有理数加法法则,学生易于接受。
在教学设计时,注重了学生的尝试和探究,如对有理数加法法则的归纳,学生列举若干实例进行分析、探究,画数轴时的动手尝试,小结时的自我概括和归纳等。
在教学时使学生的尝试和探究贯穿课堂全过程,同时重视教师的引导、指导和示范,如在概念出示时必要的板书,画图象时的示范,对关键之处的启发、点拨和讲解,还有教师与学生、学生与学生的互动等。这样有利于学生对概念的理解,也有利于培养学生的学习能力和学习习惯。
我有幸参加了这次公开课活动。几位数学老师精心准备并展示的优质课,使我感受颇深,受益匪浅。老师们的课堂授课水平之高,对教材内容挖掘之深,课堂教学过程设计之精彩,让我对自己所教学科有了更深刻的认识,下面就这方面谈谈自己的一点体会。
1、我深刻地感受到了初中数学源于生活,体现于生活。 学习的方向,是关键时刻予以适当的点拔的学习过程的支持者。在课堂学习中,学习的材料来源不再是单一的教材,更多的是从学生的生活经验来编材。与生活贴近的知识,学生听起来亲近,求知欲就强,要突破的愿望就强,做起题来积极性高,也体现出教学面向学生,面向生活,反映现实生活,而这些正是这群听课学生日常生活中经常见到的,使学生感到数学问题新颖亲近变得摸得着,看得见,易于接受,从而激发了学生内在的认知要求,变“要我学”为“我要学”。更好的启迪了学生的思维,使学生的创新意识得到了较高的培养,也实现了“生活经验数学化。”
2、在这些优质课中,体现生本教育,教师能放手让学生自己动手操作,自主探究解决问题的方法。在课上,每一位老师都很有耐性的对学生进行有效的引导,充分体现“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、 引导者和合作者”的教学理念。参加这次展示课的老师注重从学生的生活实际出发,为学生创设现实的生活情景,充分发挥学生的主体作用,引导学生自主学习、合作交流的教学模式, 让人人学有价值的数学,不同的人在数学上得到不同的发展,体现了新课程的教学理念。
3、精彩的导课非常重要。老师们几乎都精心设计了课堂导入,有的以日常生活遇到的问题入手,有的以温故知新等活动导入新课。好的导课可以拉近师生距离,使学生的向师性更强,积极参与教师的教学活动,提高课堂学习效率。
4、教师评价及时到位并且多方位。教学过程中,几乎每位老师都注意了及时评价及激励评价,对学生的赞扬和鼓励不断,如“你真细心”“你真是勇敢”“你知道的可真多”等等。这些看似微不足道的评价语言,在学生的心里却可以激起不小的情感波澜,对于整个课堂的教学效果的提高也起到了相当程度的积极影响。
5、注重“板书”的设计与书写。 随着多媒体走进课堂,板书已经置于被人遗忘的角落,悄然隐退了。殊不知,课件是不能完全代替板书的,课件的呈现具有瞬时性,况且课件的作用是“辅助”教学,怎么能替代一目了然、提纲挈领的板书设计呢?板书也是教师基本功的一个侧面反映。这次优质课,每一位老师都在板书的设计上下了工夫,有的老师书写工整,排列有序,一笔清秀的板书跃然而上,为课堂增色添彩。
6、这些课在教学过程中应用多媒体课件进行直观教学,活跃了课堂气氛,激发学习兴趣。每一节课都通过多媒体课件的展示使抽象的知识更直观,更让学生容易理解和接受。充满趣味的学习情景,以激发他们的学习兴趣。最大限度地利用学生好奇、好动、好问等心理特点,并紧密结合数学学科的自身特点,启迪他们积极思考,激发学生的求知欲,激起他们探索、追求的浓厚兴趣。促使学生的认知情感由潜伏状态转入积极状态,由自发的好奇心变为强烈的求知欲,产生跃跃欲试的主体探索意识,实现课堂教学中师生心理的同步发展。
上一节好课不容易,做一名好老师更不容易。以后的教学工作中我一定要努力探究,找出教育教学方面的差距,向这些教育教学经验丰富的老师学习,教坛无边,学海无涯,在以后的教学中,以更加昂扬的斗志,以更加饱满的热情,全身心地投入到教育教学工作中。