数学七年级上册教案【优秀5篇】

作为一名人民教师,时常需要用到教案,借助教案可以提高教学质量,收到预期的教学效果。我们应该怎么写教案呢?下面是整理的数学年级上册教案【优秀5篇】,希望可以启发、帮助到大家。

2022人教版数学七年级上册教案 篇1

一:说教材:

1教材的地位和作用

本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。

3教育目标

(1)、知识与能力

①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。

②培养学生的观察能力、分析能力和运算能力。

(2)、过程与方法

培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。

(3)、情感态度价值观

通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。

4教学重点和难点

重点和难点是如何利用有理数列式解决实际问题及正确而

合理地进行计算。

二:说教法

鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。

三:说学法指导

本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。

四:师生互动活动设计

教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。

五:说教学程序

(课本36页)例9:某公司去年1~3月份平均每月亏损1。5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1。7万元,11~12月份平均每月亏损2。3万元,这个公司去年盈亏情况如何?

师生共析:认真审题,观察、分析本题的问题共同回答以下问题:

1全年哪几个月是亏损的?哪几个月是的盈利的?

2各月亏损与盈利情况又如何?

3如果盈利记为“ ”,亏损记为“—”,那么全年亏损多少?

盈利多少?

6你能将亏损情况与盈利情况用算式列出来吗?

(5)通过算式你能说出这个公司去年盈亏情况如何吗?

【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行。)再由学生自主完成运算。

【教法说明】:此题一方面可以复习加法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的观察,分析题目的能力。为以后解决实际问题做准备。

(三):归纳小结

今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的过程用数学的形式表现出来,直观准确的解决问题。

六:说板书设计

板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。

2022人教版数学七年级上册教案 篇2

学习目标

1、掌握多项式、多项式的项及其次数,常数项的概念。

2、确定一个多项式的项、项数和次数。

3、由单项式与多项式归纳出整式概念。

4、在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。

重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。

难点:多项式的次数。

学法指导

从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。

《2.1.3多项式》同步四维训练含答案

新学期,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:

(1)请写出整齐叠放在桌面上的x本数学课本最上面距离地面的高度(用含x的整式表示);

(2)桌面上有56本与题(1)中相同的数学课本整齐叠放成一摞,若从中取走14本,求余下的数学课本最上面距离地面的高度。

《2.1.2多项式》课时练习含答案

1、下列说法中正确的是( )

A.多项式ax2+bx+c是二次多项式

B.四次多项式是指多项式中各项均为四次单项式

C.-ab2,-x都是单项式,也都是整式

D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项

2、如果一个多项式是五次多项式,那么它任何一项的次数( )

A.都小于5 B.都等于5

C.都不小于5 D.都不大于5

3、一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是( )

A.a10+b19 B.a10-b19

C.a10-b17 D.a10-b21

4、若xn-2+x3+1是五次多项式,则n的值是( )

A.3 B.5 C.7 D.0

5、下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有,多项式有。(填序号)

6、一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为。

7、多项式的二次项系数是。

8、老师在课堂上说:“如果一个多项式是五次多项式……”老师的话还没有说完,甲同学抢着说:“这个多项式最多只有六项。”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式。”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?

9、如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值。

10、四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.

(1)请把游戏最后丁所报出的答案用整式的形式描述出来;

(2)若甲取的数为19,则丁报出的答案是多少?

2022人教版数学七年级上册教案 篇3

教学内容分析:

《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。

教学目标分析:

(1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;

(2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的数学思想方法

(3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。

教学重难点分析:

1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。

2、教学重、难点

教学重点:理解乘方定义,会进行有理数的乘方运算;

教学难点:有理数乘方运算的符号法则的形成与运用

教法学法分析:

教法:启发式教学,多媒体辅助教学;

学法:观察、比较、归纳,合作探究。

教学过程设计:

1、创设情境提出问题

(1)、边长为3的正方形的面积是___ 3×3可以记作___,读作_________。

(2)、棱长为3的正方体的体积是___ 3×3×3可以记作___,读作_________。

通过创设问题情境,唤起旧知,为学习新知做好铺垫

2、自主探索形成新知

观察下列各式有何特征?

(1)2×2×2×2=

(2)(—3)×(—3)×(—3)=

引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。

3、应用新知巩固概念

练习1、2巩固乘方定义及乘方表示的注意点,培养学生良好的学习习惯。例题进一步强化乘方运算

4、探索研究发现规律

通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。

5、应用新知巩固训练

进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力

6、拓展思维知识延伸

利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。

7、课堂小结归纳反思

锻炼学生及时总结的良好习惯和归纳能力

教学评价分析:

对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;

(1)关注学生的智力参与度

(2)学生的课堂参与度

2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的`学生知识技能的发展。

2022人教版数学七年级上册教案 篇4

一、教材分析

1、教材的地位和作用

课题学习《从数据谈节水》,是人教实验版数学八年级(上)教材第十一章《数据的描述》的第三节。这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。

2、教学目标

根据学生的学习内容、新课程理念和认知水平,特制定如下目标:

(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。

(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。

(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。

3、重点和难点

(1)重点:培养学生的数感和统计观念。

(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。

二、学情分析

我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。

三、教法和学法分析

枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。例外,提供更多的学习扩展资料供学生浏览。这样可让所有学生有信心、能积极主动地参与活动,尽可能为每个学生提供获取知识的空间,让他们在活动中获得的成功,让每个学生的能力都能得到提高,让他们体验学习的快乐、获得成就感。

四、教学形式和课前准备

本课题在多媒体教室进行学习。学生在课前也收集了一些有关水资源的资料,准备直尺、铅笔、圆规、量角器等作图工具。

五、教学过程分析

教学过程设计意图说明

新课引入

资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片问题:(1)看了这些图片,你有哪些感受?

(2)你了解世界及我国有关水资源的现状吗?借助图片展示,是学生对我国国有资源现状有直观感受,触发他们的节水意识!

探究新知活动一:

阅读课本80页的“背景资料”,从中收集数据,画出统计图,并回答下列问题:

(1)地球上的水资源和淡水资源分布情况怎么样?

(2)我国农业和工业耗水量情况怎么样?

(3)我国不同年份城市生活用水的变化趋势怎么样?

(4)根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?

学生阅读资料,通过小组合作、讨论的形式完成活动一。

活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:

(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?

(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?

(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准 https://m.niubb.net/ ?

(4)如果每人节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?

(5)你还可以得到哪些信息?

(教师巡视,指导各小组开展调查实验活动)

活动三:资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活节约用水的好办法

课堂小结:

1。当前水资源状况,

2。节约水资源带来的价值,

3。节约水资源的办法

布置作业

整理本节课内容,统计相关数据;查找有关“节约水资源”的课题报告;并分析课题报告的写法。

通过具体数据使学生了解水资源现状,更深刻体会节水的重要性!

2022人教版数学七年级上册教案 篇5

一、教学目标

1。理解一个数平方根和算术平方根的意义;

2。理解根号的意义,会用根号表示一个数的平方根和算术平方根;

3。通过本节的训练,提高学生的逻辑思维能力;

4。通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

二、教学重点和难点

教学重点:平方根和算术平方根的概念及求法。

教学难点:平方根与算术平方根联系与区别。

三、教学方法

讲练结合。

四、教学手段

多媒体

五、教学过程

(一)提问

1。已知一正方形面积为50平方米,那么它的边长应为多少?

2。已知一个数的平方等于1000,那么这个数是多少?

3。一只容积为0。125立方米的正方体容器,它的棱长应为多少?

这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习:填空

1。()2=9;2。()2 =0。25;

5。()2=0。0081。

学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

由练习引出平方根的概念。

(二)平方根概念

如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

用数学语言表达即为:若x2=a,则x叫做a的平方根。

由练习知:±3是9的平方根;

±0。5是0。25的平方根;

0的平方根是0;

±0。09是0。0081的平方根。

由此我们看到3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

()2=—4

学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。

(三)平方根性质

1。一个正数有两个平方根,它们互为相反数。

2。0有一个平方根,它是0本身。

3。负数没有平方根。

(四)开平方

求一个数a的平方根的运算,叫做开平方的运算。

由练习我们看到3与—3的平方是9,9的平方根是3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

(五)平方根的表示方法

一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。

练习:1。用正确的符号表示下列各数的平方根:

①26②247③0。2④3⑤

解:①26的平方根是

②247的平方根是

③0。2的平方根是

④3的平方根是

⑤的平方根是

一键复制全文保存为WORD
相关热搜