平方根是实数的起始课,又是学习实数的第一节课,内容涉及的知识点不多,知识的切入点比较低,而新课程将其建立在以学内容有理数的基础上,加强与前面的知识点的联系。为了更好的将教与学有机结合,提高课堂教学效率,
知识背景:学生已经学会了乘方运算。
能力背景:能借助乘方运算解决其逆运算-----开平方
预测目标:1.能熟练地求一个正数的平方根。
2、知道乘方与开方的联系与区别
四、教具准备: 多媒体
【知识与技能】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【过程与方法】通过练习,进一步熟悉开平方的运算过程,能熟练的进行开平方的。运算过程。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】能熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续学习打下基础。
【教具准备】小黑板 科学计算器
【教学过程】
一、复习导入
1、小刚家厨房的面积为10平方米的正方形,它的边长是多少米?边长的近似值是多少?(用四舍五入的方法取到小数点后面第二位)(,)
2、用计算器分别求,得近似值。(用四舍五入的方法取到小数点后面第三位)
3、0.36的平方根是( )
4、(-5)2的算术平方根是( )
二、练习内容
(一)填空
1、若=1.732,那么=( ) 2、(-)2=( )
3、 =( ) 4、若x=6,则=( )
5、若=0,则x=( ) 6、当x( )时,有意义。
(二)选择
1、下列各数中没有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是( )
A.B.C.D.; 2、4x2-49=0; 3、(25/81)x2=1;
4、求8+(-1/6)2的算术平方根;
5、求b2-2b+1的算术平方根;(b<1)
6、
7、 ;(用四舍五入方法取到小数点后面第三位)
8、肖明家装修用了大小相同的正方形瓷砖共66块,铺成了10.56平方米的房间,肖明想知道每块瓷砖的规格,请你帮助算一算。
三、小结与巩固
一、内容和内容解析
1、内容
无限不循环小数;求算术平方根的更一般的方法——用有理数估算、用计算器求值。
2、内容解析
无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现
是一个无限不循环小数的结论。发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程。
用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力。
使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法。这完全可以让学生自己完成。
基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围。
二、目标和目标解析
1、教学目标
(1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值。
(2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律。
2、目标解析
(1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围。
(2)学生会概述利用计算器求一个正数的算术平方根的程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大(或缩小)100倍,它的算术平方根就扩大(或缩小)10倍。
三、教学问题诊断分析
用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间。为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求。
基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的含义。
四、教学过程设计
1、梳理旧知,引出新课
问题1
(1)什么是算术平方根?怎样表示?
(2)负数有算术平方根吗?
师生活动 学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,例如,=4;但实际生活中,我们还会遇到被开方数不是一个数的平方数的情况,这时,它的算术平方根又该怎祥求呢?
设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容。
2、问题探究,学习新知
问题2 能否用两个面积为1dm的小正方形拼成一个面积为2dm的大正方形?
师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法。
追问(1) 拼成的这个面积为2dm
的大正方形的边长应该是多少呢?
师生活动:学生自行解答,教师对解答有困难的学生进行指导。
追问(2) 小正方形的对角线的长是多少呢?
师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长dm。
设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备。
问题3
有多大呢?为了弄清这个问题,请同学们探究“
在哪两个整数之间呢?”
师生活动:先让学生思考讨论并估计大概有多大,由直观可知大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程。
追问(1) 那么
是1点几呢?你能不能得到
的更精确的范围?
师生活动:学生用试验的方法可得到平方数小于2且最接近的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,所以大于1.4而小于1.5……在此基础上教师按教科书上的推理进行讲解并板书。说明是一个无限不循环小数,以及什么是无限不循环小数。并要求学生回忆以前学过的数,进行比较。
追问(2) 实际上,许多正有理数的算术平方根,如等都是无限不循环小数。根据估计的大小的方法,请你估计的整数部分是多少?
设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的方法,并从中体会是一个无限不循环小数。让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础。追问(2)主要为及时巩固估算方法
3、用计算器,求算术根
例1 用计算器求下列各式的值:
师生活动:教师指导学生操作,获得问题答案。解答完(2)后,让学生与上面所估计的大小进行比较,体会夹逼法的可行性。说明用计算器可以求出任意一个正数的算术平方根,但不同品牌的计算器,按键顺序可能有所不同。用计算器求出的算术平方根,有的是准确值,如题(1),有的是近似值,如题(2)。
设计意图:使学生会使用计算器求算术平方根。
练习 教科书第44页练习1。
师生活动:学生独立完成后交流。
设计意图:巩固计算器求算术平方根。
4、综合应用,巩固所学
现在我们来解决本章引言中的问题。
问题4 (1)你会表示
(2)用计算器求(用科学记数法把结果写成的`形式,其中保留小数点后一位)
师生活动:学生理解题意,根据公式,可得,代入,利用计算器求出
设计意图:让学生体会计算器在解决实际问题中的应用。
问题5 利用计算器计算下表中的算术平方根,并将计算结果填在表中。
师生活动:学生计算填表。
追问(1) 你发现了什么规律?
师生活动:学生思考、讨论,教师归纳:被开方数的小数点向右或向左移动2位,它的算术平方根的小数点就相应地向右或向左移动1位。
追问(2) 你能说出其中的道理吗?
师生活动:学生讨论,交流,教师引导学生从被开方数扩大的倍数与其算术平方根扩大的倍数思考回答。即当被开方数扩大(或缩小)100倍,10000倍…时,其算术平方根相应地扩大(或缩小)10倍,100倍……
追问(3) 用计算器计算
(精确到0.001),并利用刚才的得到规律说出的近似值。
师生活动:学生计算,并根据所获规律回答。
追问(4) 你能根据的值说出是多少吗?
师生活动:学生回答,因为被开方数30与3不符合上述规律,所以无法由的值说出是多少。
设计意图:巩固用计算器求算术平方根以及其在探究规律中的应用。
例2 小丽想用一块面积为400cm
的长方形纸片,沿着边的方向剪出一块面积为300cm
的长方形纸片,使它的长宽之比为3:2。她不知能否裁得出来,正在发愁。小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?
师生活动:教师出示问题,学生理解题意,学生可能会和小明有同样的想法,此时教师进行如下引导:
(1)你能将这个问题转化为数学问题吗?
(2)如何求出长方形的长和宽?
(3)长方形的长和宽与正方形的边长之间的大小关系是什么?
最后给出完整的解答过程。
设计意图:让学生体验估算的实际应用。
5、归纳小结:
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)利用夹逼法来求算术平方根的近似值的依据是什么?
(2)利用计算器可以求出任意正数的算术平方根或近似值吗?
(3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?
(4)怎样的数是无限不循环小数?
设计意图:让学生对本节课知识进行梳理,同时也帮助学生养成良好的习惯。
6、布置作业:
教科书习题6。1第6、9、10题。
五、目标检测设计
1、求
的整数部分。
【设计意图】主要考查学生的估算能力。
2、比较下列各组数的大小。
【设计意图】主要考查学生的估算和比较大小的能力。
【设计意图】主要考查学生对算术平方根概念以及有关规律的理解。
3、国际比赛的足球场的长在100m到110m之间, 宽在64m到75m之间, 现有一个长方形的足球场其长是宽的1.5倍, 面积为7560m, 问:这个足球场能用作国际比赛吗?
【设计意图】主要考查学生运用算术平方根解决实际问题的能力。
一、教学目标
1.理解一个数平方根和算术平方根的意义;
2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合
四、教学手段
幻灯片
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0。125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1.一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3.负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1.用正确的符号表示下列各数的平方根:
①26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
③0。2的。平方根是
④3的平方根是
⑤ 的平方根是
由学生说出上式的读法。
例1。下列各数的平方根:
(1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根为±9。即:
(2)
的平方根是 ,即
(3)
的平方根是 ,即
(4)∵(±0。7)2=0。49,
∴0。49的平方根为±0。7。
小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。
六、总结
本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识。
七、作业
教材P。127练习1、2、3、4。
八、板书设计
平方根
(一)概念 (四)表示方法 例1
(二)性质
(三)开平方
探究活动
求平方根近似值的一种方法
求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。
例1。求 的值。
解 ∵92102,
两边平方并整理得
∵x1为纯小数。
18x1≈16,解得x1≈0。9,
便可依次得到精确度
为0。01,0。001,……的近似值,如:
两边平方,舍去x2得19.8x2≈—1.01
一、学生起点分析
学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能。
学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》。本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学。课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:
①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质。
②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识。
③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲。
三、教学过程设计
本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置。
第五环节:学习小结
内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的通过这节课的学习,我们要掌握以下的内容:
(1)算术平方根的概念,式子中的。双重非负性:一是a≥0,二是≥0。
(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根。
(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根。
目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质。
第六环节:作业布置
习题2.3
四、教学设计反思
1、细讲概念、强化训练
要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程。概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的概念教学过程中要做到:讲清概念,加强训练,逐步深化。
“讲清概念”就是通过具体实例揭露算术平方根的本质特征。算术平方根的本质特征就是定义中指出的:“如果一个正数的平方等于,即,那么这个正数就叫做的算术平方根,”的“正数”,即被开方数是正的,由平方的意义,也是正数,因此算术平方根也必须是正的当然零的算术平方根是零。
“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示。
“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用。
2、发展思维、适度拓展
在教学中,根据学生的实际情况,在学有余力的情况下,可以对的双重非负性的知识进行适当的拓展。
教学设计示例
一.教学目标
1.会用计算器求数的平方根;
2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。
二.教学重点与难点
教学重点:用计算器求一个正数的平方根的程序
教学难点:准确用计算器求解一个正数的平方根
三.教学方法
讲练结合
四.教学手段
实物投影仪,计算器
五.教学过程
在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01, 等数的平方根,但对于如:2,3, ,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。熟悉计算器基本键的功能。
现在讲计算器打开,按 键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求 的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。
解:用计算器求 的步骤如下:
小结:在求解 的过程中,由于要用到 这个键上方 的功能,这就需要用上方标有“2F”的键来转换。
例2.用计算器求 的值。(保留4个有效数字)
解:用计算器求 的步骤如下:
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求 的'值。
解:用计算器求 的步骤如下:
因为计算结果要求保留4个有效数字,
例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:
因为计算结果要求保留4个有效数字,
小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:
分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
解:按键的顺序是:显示612.65685
≈612.7
练习:
求下列正数的算术平方根:
(1)49 ; (2)0.81; (3)1.5376; (4)5 ; (6)260;
(7) ; (8)101.38
六.总结
利用计算器求解既快又精确,操作时要严格按照步骤执行。特别注意要用到第二功能键,首先要先按“2F”在按需要的键。由于各种计算器的键的功能各不相同,因此要注意操作顺序,查看说明书熟悉各键的具体功能。
八.作业
教材 A组1、2、3
九、板书设计
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受 的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。
P75习题13.1活动第1、2、3题
算术平方根的概念。
教学目标:
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
教学重点:
算术平方根的概念。
教学难点:
根据算术平方根的概念正确求出非负数的算术平方根。
教学过程
一、情境导入
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?
这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。
二、导入新课:
1、提出问题:(书P68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值。
一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根。a的算术平方根记为 ,读作根号a,a叫做被开方数。规定:0的算术平方根是0.
也就是,在等式 =a (x0)中,规定x = .
2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来。
3、 想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如 表示25的算术平方根。
4、例1 求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
三、练习
P69练习 1、2
四、探究:(课本第69页)
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的`值吗?
建议学生观察图形感受 的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。
五、小结:
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
六、课外作业:
P75习题13.1活动第1、2、3题
根据算术平方根的概念正确求出非负数的算术平方根。
1、说说你对平方根的理解?
以上就是数学网小编分享七年级《平方根》数学教案的全部内容,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!
1、提出问题:(书P68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值。
一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根。a的算术平方根记为 ,读作根号a,a叫做被开方数。规定:0的算术平方根是0.
也就是,在等式 =a (x0)中,规定x = 。
2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来。
3、 想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的。意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如 表示25的算术平方根。
4、例1 求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
一、内容和内容解析
1、内容
算术平方根的概念,被开方数越大,对应的算术平方根也越大、
2、内容解析
算术平方根是初中数学中的重要概念,引入算术平方根,是解决实际问题的需要、作为《实数》的开篇第一课,掌握好算术平方根的概念和计算,一方面可为后续研究平方根、立方根提供方法上的借鉴,另一方面也是为认识无理数,完成数集的扩充,解决数学内部运算,以及二次根式的学习等作准备、
算术平方根的概念分两个部分,分别是关于一个正数算术平方根的定义和关于0的算术平方根的规定、由算术平方根的概念引出其符号表示、读法及什么是被开方数、
根据算术平方根的概念,可以利用互逆关系,求一些数的算术平方根、根据这些数的算术平方根的结果,不难归纳得出“被开方数越大,对应的算术平方根也越大”的结论,其间体现了从特殊到一般的思想方法、
基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法、
二、目标和目标解析
1、教学目标
(1)了解算术平方根的概念,会用根号表示一个非负数的算术平方根、
(2)会求一些数的算术平方根、
2、目标解析
(1)学生能说出正数的算术平方根的定义,记住0的算术平方根是0;会用符号表示一个非负数的算术平方根,并能正确读出符号,能够说出中数的名称;理解符号中被开方数≥0(即是一个非负数)的条件,了解也是一个非负数、
(2)学生能依据算术平方根的定义判断一个数有没有算术平方根;掌握用平方运算求某些数的算术平方根的方法,会求出100以内完全平方数或分子、分母均是这类数的分数的算术平方根,以及上述这类数扩大(或缩小)100倍、10000倍的数的算术平方根;了解被开方数越大,对应的算术平方根也越大、
三、教学问题诊断分析
在本课学习之前,学生们已经掌握了一些完全平方数,对乘方运算也有一定的认识、但对于算术平�
教学难点
根据算术平方根的概念正确求出非负数的算术平方根。
知识重点
算术平方根的概念。
教学过程(师生活动)
设计理念
情境导入 同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子。因为这一天,神舟五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示神舟五号飞船升空时的画面)。那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度 (米/秒)而小于第二宇宙速度: (米/秒)。 、 的大小满足 。怎样求 、 呢?这就要用到平方根的概念,也就是本章的主要学习内容。
这节课我们先学习有关算术平方根的概念。
请看下面的问题。 神舟五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀。此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣。这里的计算实际上是已知幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路。
提出问题
感知新知 多媒体展示教科书第160页的问题(问题略),然后提出问题:
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值。
练习:教科书第160页的填表。 练习:教科书第160页的填表。这个问题抽象成数学问题就是已知正方形的面积求正方形的边长,这与学生以前学过的
已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。
归纳新知 上面的问题,可以归纳为已知一个正数的平方,求这个正数的问题。实际上是乘方运算中,已知一个数的指数和它的幂求这个数。
一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根。a的算术平方根记为 ,读作根号a,a叫做被开方数。规定:0的算术平方根是0。
也就是,在等式 =a (x0)中,规定x = 。
思考:这里的数a应该是怎样的数呢?
试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来。
想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如 表示25的算术平方根,因为 也可以写成 ,读作二次根号a。
算术平方根的概念比较抽象,原因之一是学生对石这个新
的符号的理解要有一个过程。通过此问题,使学生对符号而表示的具体含义有更具体、更深刻的认识。
应用新知 例。(课本第160页的例1)求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0。0001
建议:首先应让学生体验一个数的。算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使 =100,因为 例题的解答展示了求数的算术平方根的思考过程。在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果。
探究拓展 提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受 的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。
教科书在边空提出问题小正方形的对角线的长是多少,
这是为在10。3节介绍在数轴上画出表示 的点做准备。
小结与作业
课堂小结
提问:1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根?
布置作业 3、 必做题:课本第167页习题10。1第1、2、3题;168页第11题。
4、 备5、 选题:
(1)判断下列说法是否正确:
i。 是25的算术平方根;
ii。 一6是 的算术平方根;
iii。 0的算术平方根是0;
iv。 0。01是0。1的算术平方根;
⑤一个正方形的边长就是这个正方形的面积的算术平方根。
(2)下列各式哪些有意义,哪些没有意义?
①— ② ③ ④
(3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。
在本节的第一个探究栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略。特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题。
通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣的。教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练。
通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备。
P69练习 1、2
学习目标:
1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。
学习重点:
了解平方根的概念,求某些非负数的平方根
学习难点:
了解被开方数的非负性;
学习过程:
一、 学习准备
1、我们已经学习过哪些运算?它们中互为逆运算的是?
答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。
2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。
32 = ( ) ( )2 = 9
(—3)2= ( ) ( )2 =
( )2= ( ) ( )2 = 0
( )2 =( )
02 =( ) ( )2 = —4
3、左边算式已知底数、指数 求幂 ,右边算式已知幂、指数 求底数
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。
即如果X2=a,那么 叫做 的平方根。请按照第3页的举例你再举两个例子说明:
叫做开平方,平方与 互为逆运算
4、观察上面两组算式,归纳一个数的平方根的性质是:
一个正数 有两个平方根,它们互为相反数;
零 有一个平方根,它是零本身;
负数 没有平方根。
交流:(1) 的平方根是什么?
(2)0.16的平方根是什么?
(3)0的平方根是什么?
(4)—9的平方根是什么?
5、平方根的表示方法
一个正数a有两个平方根,它们互为相反数。
正数a的`正的平方根,记作
正数a的负的平方根,记作
这两个平方根合在一起记作
如果X2=a,那么X= ,其中符号 读作根号,a叫做被开方数
这里的a表示什么样的数? a是非负数
二、合作探究
1、判断下面的说法是否正确:
1)—5是25的平方根; ( )
2)25的平方根是—5; ( )
3)0的平方根是0 ( )
4)1的平方根是1 ( )
5)(—3)2的平方根是—3 ( )
6) —32的平方根是—3 ( )
2、阅读课本第4页例题1,按例题格式判断下列各数有没有平方根,若有,求其平方根。若没有,说明为什么。
(1) 0.81 (2) (3) —100 (4) (—4)2
(5)1.69 (6) (7) 10 (8) 5
三、学习体会:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试
1、检验下面各题中前面的数是不是后面的数的平方根。
(1)12 , 144 ( ) (2)0.2 , 0.04 ( )
(3)102 ,104 ( ) (4)14 ,256 ( )
2、选择题(1) 0.01的平方根是 ( )
A、0.1 B、0.1 C、0.0001 D、0.0001
(2)因为(0.3)2 = 0.09 所以( )
A、0.09 是 0.3的平方根。 B、0.09是0.3的3倍。
C、0.3 是0.09 的平方根。 D、0.3不是0.09的平方根。
3、判断下列说法是否正确:
(1)—9的平方根是—3; ( )
(2)49的平方根是7 ; ( )
(3)(—2)2的平方根是 ( )
(4)—1 是 1的平方根; ( )
(5)若X2 = 16 则X = 4 ( )
(6)7的平方根是49。 ( )
4、求下列各数的平方根
1)81 2)0。25 3) 4)(—6)2
5、求下列各式中的x:
(1) x=16 (2) x= (3) x=15 (4) 4x=81
思维拓展:
1、一个数的平方等于它本身,这个数是 一个数的平方根等于它本身,这个数是
2、若3a+1没有平方根,那么a一定 。 3、若4a+1的平方根是5,则a= 。
4、一个数x的平方根等于m+1和m—3,则m= 。x= 。
5、若|a—9|+(b—4)=0,则ab的平方根是 。
6、熟背1至20的平方的结果。
7、分别计算 32 ,34 ,46 ,58 ,512 ,10 的平方根,你能发现开平方后幂的指数有什么变化吗?
学习目标:
1、在实际问题中,感受算术平方根存在的意义,理解算术平方根的概念,算术平方根具有双重非负性
2、会用计算器求一个数的算术平方根;利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律;
学习重点:理解算术平方根的概念
学习难点:算术平方根具有双重非负性
学习过程:
一、学习准备
1、阅读课本第3页,由题意得出方程x=,那么X=,这种地砖一块的边长为m
2、正数a有2个平方根,其中正数a的正的平方根,也叫做a的算术平方根。
例如,4的平方根是,叫做4的算术平方根,记作=2,2的平方根是“ ”,叫做2的算术平方根,3、(1)16的算术平方根的平方根是什么?5的算术平方根是什么?
(2)0的算术平方根是什么?0的算术平方根有几个?
(3)2、-5、-6有算术平方根吗?为什么?
4、按课本第4页例题1格式求下列各数的算术平方根:
二、合作探究:
1、阅读课本第5页利用计算器求算术平方根的方法,利用计算器求下列各式的值。
2、利用计算器求下列各数的算术平方根
a2000020020.020.0002
通过观察算术平方根,归纳被开方数与算术平方根之间小数点的变化规律
3、在中,表示一个数,表示一个数,算术平方根具有
练习:若a-5+ =0,则的平方根是
三、学习:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试:
1、判断下列说法是否正确:
①5是25的算术平方根;()②-6是的算术平方根;()
③ 0的算术平方根是0;()④ 0.01是0.1的'算术平方根;()
⑤一个正方形的边长就是这个正方形的面积的算术平方根.()
2、若=2.291,=7.246,那么=( )
A.22.91 B.72.46 C.229.1 D.724.6
3、下列各式哪些有意义,哪些没有意义?
4、求下列各数的算术平方根
①121 ②2.25 ③ ④(-3)2
5、求下列各式的值① ② ③ ④
思维拓展:
1、一个数的算术平方根等于它本身,这个数是。
2、若x=16,则5-x的算术平方根是。
3、若4a+1的平方根是±5,则a的算术平方根是。
4、的平方根等于,算术平方根等于。
5、若a-9+ =0,则的平方根是
6、的平方根等于,算术平方根是。
7、,求xy算术平方根是。
数学小知识——怎样用笔算开平方
我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.如图2所示分别求85264,12.5平方根的过程。自己举例试试!
解一元一次方程
4.2解一元一次方程(第2课时)
一、目标:
知识目标:能熟练地求解数字系数的一元一次方程(不含去括号、去分母)。
过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。
情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。
二、重难点:
重点:学会解一元一次方程
难点:移项
三、学情分析:
知识背景:学生已学过用等式的性质来解一元一次方程。
能力背景:能比较熟练地用等式的性质来解一元一次方程。
预测目标:能熟练地用移项的方法来解一元一次方程。
四、教学过程:
(一)创设情景
一头半岁蓝鲸的体重是22t,90天后的体重是30.1t,蓝鲸的体重平均每天增加多少?
(二)实践探索,揭示新知
1.例2.解方程:看谁算得又快:
解:方程的两边同时加上得解:6x ? 2=10
移项得6x =10+2
即合并同类项得
化系数为1得
大家看一下有什么规律可寻?可以讨论
2 .移项的概念:根据等式的基本性质方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫做移项。
看谁做得又快又准确!千万不要忘记移项要变号。
3.解方程:3x+3 =12,4.例3解方程:例4解方程:
2x=5x-21 x-3=4-
5.观察并思考:
①移项有什么特点?
②移项后的化简包括哪些
(三)尝试应用,反馈矫正
1.下列解方程对吗?
(1)3x+5=4 7=x-5
解:3x+ 5 =4解:7=x-5
移项得:3x =4+5移项得:-x= 5+7
合并同类项得3x =9合并同类项得-x= 12
化系数为1得x =3化系数为1得x =-12
2解方程
(1). 10x+1=9 (2) 2—3x =4-2x;
(四)归纳小结
1.今天学习了什么?有什么新的简便的写法?
2.要注意什么?
3.解方程的一般步骤是什么?
4.. (1)移项实际上是对方程两边进行,使用的是
(2)系数化为1实际上是对方程两边进行,使用的是。
(3)移项的作用是什么?
六、1.课堂作业:课本习题4.2第二题
2.家作:评价手册4.2第二课时
1、若方程4x ? 3 ( a ? x ) = 5x ? 7 ( a ? x )
的解是x = 3,求a的值。
2.对于关于x的方程
2 k x = ( k + 1 ) x + 6,当整数k为何值时,方程的解为整数?
教学目标
1、使学生了解数的平方根的概念和性质。
2、使学生能够根据平方根的定义正确的求出一非负数的平方根。
3、提高学生对数的认识。
教学重点
平方根的概念和求法
教学难点
非负数平方根的个数问题
教具学具
投影仪
教学方法
讲练结合
(补 标 小 结)
教 学 过 程
( 展 标 施 标 查 标)
教 学 内 容
教师活动
学生活动
一、引入新课
以正方形的面积和边长的关系引入平方根的概念
展标
投影:
1、已知一正方形面积为4cm2,则它的边长为---------cm
2、已知一正方形面积为2cm2则它的边长为---------cm
这两个小题有什么共同特点?
这就是我们今天要来研究的一个新的概念——平方根
二、施标
1、平方根的定义:
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)
求一个数的平方根的平方根的运算叫做开平方
2、平方根的性质
(1)一个正数有几个平方根?
(2)0有几个平方根
(3)一个负数有几个平方根?
3、平方根的表示方法
填空(投影)
1、( )2=9
2、( )2=0.25
3、( )2= 1625
4、( )2=0
5、( )2=0.0081
这五个小题形如x2=a
X叫做a的平方根(二次方根)
板书:
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)
求一个数的平方根的运叫做开平方
提问:
是不是每个数都有平方根?
如果有的话,有几个?它们之间是什么关系?
讨论总结
1、一个正数有两个平方根,它们互为相反数。
2、0只有一个平方根,就是0本身。
3、负数没有平方根。
平方根表示方法练习
4、求一个非负数的平方根
例1、求下列各数的平方根?
(1)361
(2)14449
(3)0.81
(4)23
读作:正、负二次根号下a
a的`正的平方根:+√a
a的负的平方根:-√a
投影练习题:
1、用正确的符号表示下列各数的平方根
① 26、②247、③0.2
④3、⑤783
2、+√7表示什么意思?
3、-√7表示什么意思?
4、±√7表示什么意思?
引导学生回答并板书解题步骤:
解:
(1)∵(±19)2=361
∴361的平方根为
±√361=±19
(2)∵(±127)2=14449
∴14449的平方根为±√14449=±19
(3)∵(±0.9)2=0.81
∴0.81的平方根为
±√0.81=±0.9
(4)23的平方根为±√23
(±19)2=361
(±127)2=14449
(±0.9)2=0.81
(±√23)2=23
三、查标
四、小结
一、内容和内容解析
1.内容
无限不循环小数;求算术平方根的更一般的方法---用有理数估算、用计算器求值.
2.内容解析
无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现是一个无限不循环小数的结论.发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程.
用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力.
使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法.这完全可以让学生自己完成.
基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围.
二、目标和目标解析
1.教学目标
(1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值.
(2)会利用计算器求一个正数的。算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.
2.目标解析
(1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围.
(2)学生会概述利用计算器求一个正数的算术平方根的程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大(或缩小)100倍,它的算术平方根就扩大(或缩小)10倍.
三、教学问题诊断分析
用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间.为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求.
基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的含义.
四、教学过程设计
1.梳理旧知,引出新课
问题1 (1)什么是算术平方根?怎样表示?
(2)负数有算术平方根吗?
师生活动 学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,例如,=4;但实际生活中,我们还会遇到被开方数不是一个数的平方数的情况,这时,它的算术平方根又该怎祥求呢?
设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容.
2.问题探究,学习新知
问题2 能否用两个面积为1d的小正方形拼成一个面积为2d的大正方形?
师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法.
追问(1) 拼成的这个面积为2d的大正方形的边长应该是多少呢?
师生活动:学生自行解答,教师对解答有困难的学生进行指导.
追问(2) 小正方形的对角线的长是多少呢?
师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长d.
设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备.
问题3 有多大呢?为了弄清这个问题,请同学们探究“在哪两个整数之间呢?”
师生活动:先让学生思考讨论并估计大概有多大,由直观可知大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程.
追问(1) 那么是1点几呢?你能不能得到的更精确的范围?
师生活动:学生用试验的方法可得到平方数小于2且最接近的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,所以大于1.4而小于1.5……,在此基础上教师按教科书上的推理进行讲解并板书.说明是一个无限不循环小数,以及什么是无限不循环小数.并要求学生回忆以前学过的数,进行比较.
追问(2) 实际上,许多正有理数的算术平方根,如,,等都是无限不循环小数.根据估计的大小的方法,请你估计的整数部分是多少?
设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的方法,并从中体会是一个无限不循环小数.让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础.追问(2)主要为及时巩固估算方法.
3.用计算器,求算术根
例1 用计算器求下列各式的值:
(1); (2)(精确到0.001)
师生活动:教师指导学生操作,获得问题答案.解答完(2)后,让学生与上面所估计的的大小进行比较,体会夹逼法的可行性.说明用计算器可以求出任意一个正数的算术平方根,但不同品牌的计算器,按键顺序可能有所不同.用计算器求出的算术平方根,有的是准确值,如题(1),有的是近似值,如题(2).
设计意图:使学生会使用计算器求算术平方根.
练习 教科书第44页练习1.
师生活动:学生独立完成后交流.
设计意图:巩固计算器求算术平方根.
4.综合应用,巩固所学
现在我们来解决本章引言中的问题.
问题4 (1)你会表示出, 吗?
(2)用计算器求, .(用科学记数法把结果写成的形式,其中保留小数点后一位)
师生活动:学生理解题意,根据公式,可得,,将,代入,利用计算器求出, .
设计意图:让学生体会计算器在解决实际问题中的应用.
问题5 利用计算器计算下表中的算术平方根,并将计算结果填在表中.
…
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)利用夹逼法来求算术平方根的近似值的依据是什么?
(2)利用计算器可以求出任意正数的算术平方根或近似值吗?
(3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?
(4)怎样的数是无限不循环小数?
设计意图:让学生对本节课知识进行梳理,同时也帮助学生养成良好的习惯.
6.布置作业:
教科书习题6.1第6、9、10题.
五、目标检测设计
1.求的整数部分.
【设计意图】主要考查学生的估算能力.
2.比较下列各组数的大小.
(1)与;(2)与12;(3)与.
【设计意图】主要考查学生的估算和比较大小的能力.
3.若,,那么_______;_______.
【设计意图】主要考查学生对算术平方根概念以及有关规律的理解.
4.国际比赛的足球场的长在100到110之间, 宽在64到75之间, 现有一个长方形的足球场其长是宽的1.5倍, 面积为7560, 问:这个足球场能用作国际比赛吗?
【设计意图】主要考查学生运用算术平方根解决实际问题的能力.
一、说教材
《平方根》是人教20xx版七年级数学第六章实数的第一节内容。本节课学习第一个课时----平方根,是学习实数的准备知识,为学习二次根式作铺垫,提供知识积累。
二、说教学目标
结合着七年级学生的认知结构及其心理特征,我制定了以下的教学目标:
1.让学生理解平方根的概念,正确的读写有关平方根的式子,会用平方运算求完全平方数的平方根。
2.让学生经历从实际例子归纳出平方根概念的过程,理解概念的本质。
三、说教学的重难点
教学重点:平方根的概念
教学难点:掌握平方根的概念和性质、能正确求出完全平方数的平方根及利用双重非负性解决问题
四、说学情
1、学生现有基础:学生在上学期时已学过了乘方的运算,有助于本节的学习活动。
2、学习的现状:此阶段的学生对新鲜事物或新内容特别感兴趣,但缺乏学习的方法。
五、说教法与学法
教法:以前学生虽然学过乘方运算,但由于间隔时间过长,他们会有不同程度的遗忘,甚至有些概念已没了印象,同时也为了实现新旧教学方式和学习方式的接轨,结合本课特点,我采取以下教学方法:(1)情境教学法:(2)对比教学法:把二次方与平方根的概念,计算过程等对比起来进行教学,降低了学生的学习难度。
学法:小组交流合作法和自主学习法。把过程还给学生,让过程与结果并重。
六、教学程序:
本节课的主要流程为:
预习新知、激趣引入→新知探究、合作交流→巩固练习、强化认识
(一)、预习新知、激趣引入
由画布问题引出平方根的概念:如果一个正数的平方等于a,即2=a,那么这个正数x就叫做a的平方根。这样的设计,其目的是通过表格填空,与正数的平方比较引出平方根的概念,沟通二者之间的关系,培养学生的逆向思维能力。
(二)、新知探究合作交流
这一环节是整节课的。重点环节,引导学生对平方根的概念和性质进行了探究,在此基础上掌握a的平方根的表示方法及被开方数a的限制。
(三)、巩固练习、强化认识
由于学生还不熟平方根的表示方法,所以在书写时尽量规范。对平方根的读记练习,让学生通过具体的事例明白各式所表示意义,亲自操作,进而总结归纳,共享经验,提高学生的语言表达能力。
在对本节课进行归纳总结时重点围绕以下问题:1、什么是一个非负数的平方根?2、正数、0的平方根有什么规律?3、怎么样求一个数的平方根?正数a的平方根怎么表示?
(四)、板书设计
6.1平方根
投影课文画布问题及表格
1、平方根的概念例1学生
2、平方根的表示方法例2演板
3、平方根的性质例3
七、设计说明:
11、指导思想:
依据学生已有的基础及教材所处的地位和作用,在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成。
2、关于教法和学法采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,激发学生兴趣,调节学习情绪,让学生在乘方和平方根的性质法则的比较中发现问题;在练习训练中提高解题能力,培养良好学习习惯。同时,采用媒体辅助教学,增大教学密度,提高教学效率。
3、关于教学程序的设计
在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:
①面向全体学生,启发式与探究式教学。
②注重学生参与知识的形成过程,增强学习数学的信心。
③让学生在获取知识的同时,掌握方法,灵活运用。
一、情境导入
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?
这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。
学习目标:
1、在实际问题中,感受算术平方根存在的意义,理解算术平方根的概念,算术平方根具有双重非负性
2、会用计算器求一个数的算术平方根;利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的'规律;
学习重点:理解算术平方根的概念
学习难点:算术平方根具有双重非负性
学习过程:
一、学习准备
1、阅读课本第3页,由题意得出方程x= ,那么X= ,
这种地砖一块的边长为 m
2、正数a有2个平方根,其中正数a的正的平方根,也叫做a的算术平方根。
例如,4的平方根是 , 叫做4的算术平方根,记作 =2,
2的平方根是“ ”, 叫做2的算术平方根,
3、(1)16的算术平方根的平方根是什么? 5的算术平方根是什么?
(2)0的算术平方根是什么? 0的算术平方根有几个?
(3)2、-5、-6有算术平方根吗?为什么?
4、按课本第4页例题1格式求下列各数的算术平方根:
(1)625(2)0. 81;(3)6;(4) (5) (6)
二、合作探究:
1、阅读课本第5页利用计算器求算术平方根的方法,利用计算器求下列各式的值。
(1) (2) (3)
2、利用计算器求下列各数的算术平方根
a2000020020.020.0002
通过观察算术平方根,归纳被开方数与算术平方根之间小数点的变化规律
3、在 中, 表示一个 数, 表示一个 数,算术平方根具有
练习:若a-5+ =0,则 的平方根是
三、学习:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试:
1、判断下列说法是否正确:
①5是25的算术平方根;( )②-6是 的算术平方根; ( )
③ 0的算术平方根是0;( ) ④ 0.01是0.1的算术平方根; ( )
⑤一个正方形的边长就是这个正方形的面积的算术平方根. ( )
2、若 =2.291, =7.246,那么 =( )
A.22.91 B. 72.46 C.229.1 D.724.6
3、下列各式哪些有意义,哪些没有意义?
4、求下列各数的算术平方根
①121 ②2.25 ③ ④(-3)2
5、求下列各式的值 ① ② ③ ④
思维拓展:
1、一个数的算术平方根等于它本身,这个数是 。
2、若x=16,则5-x的算术平方根是 。
3、若4a+1的平方根是±5,则a的算术平方根是 。
4、 的平方根等于 ,算术平方根等于 。
5、若a-9+ =0,则 的平方根是
6、 的平方根等于 ,算术平方根是 。
7、 求xy算术平方根是。
数学小知识——怎样用笔算开平方
我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第 二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.如图2所示分别求85264, 12.5平方根的过程。自己举例试试!
教学目标:
了解数的算术平方根及平方根的概念,并会用符号表示;理解平方与开方之间是互为逆运算的关系,会用计算器求一些正数的算术平方根。
教学重点:
了解数的算术平方根及平方根的概念,会求某些非负数的平方根,会用根号表示一个数的平方根。
教学难点:
对 大小的估算及如何理解 是非负数以及被开方数 是非负数;正确区分算术平方根与平方根。
第1课时
一、创设情景,导入新课
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?
这个问题实际上是已知一个正数的平方,求这个正数的问题(引入新课)
二、合作交流,解读探究
讨论:1、什么样的运算是平方运算?
2、你还记得1~20之间整数的平方吗?
自主探索:让学生独立看书,自学教材
总结:一般地,如果一个正数 的平方为 ,即 ,那么正数 叫做 的算术平方根,记为 ,读作根号 ,其中 叫做被开方数。 另外:0的算术平方根是0
探究:怎样用两个面积为1的正方形拼成一个面积为2的大正方形
把两个小正方形沿对角剪开,将所得的四个直角形拼在一起,就的到一个面积为2的大正方形。
设大正方形的边长为 ,则 ; 由算术平方根的意义,
即大正方形的边长为 。 讨论: 有多大呢?
思考:你能举些象 这样的无限不循环小数吗?
三、应用迁移,巩固提高
例1 求下列各数的算术平方根
⑴100 ⑵ ⑶0.0001 ⑷0 ⑸
点拨:由一个数的算术平方根的定义出发来解决问题
思考:-4有算术平方根吗?
备选例题:要使代数式 有意义,则 的取值范围是( )
A. B. C. D.
四、总结反思,拓展升华
小结:1、算术平方根的定义和性质;
2、用计算器求一个正数的算术平方根
拓展:已知 的算术平方根是3, 的算术平方根是4, 是 的整数部分,求 的算术平方根
五、课堂跟踪反馈
1、 非负数 的算术平方根表示为___,225的算术平方根是____,0的算术平方根是____
2、
3、 的算术平方根是_____, 的算术平方根____
4、 若 是49的算术平方根,则 =( )
A. 7 B. -7 C. 49 D.-49
5、 若 ,则 的算术平方根是( )
A. 49 B. 53 C.7 D 。
6、 若 ,求 的值。
7、 若 是 的整数部分, 是 的小数部分,试确定 、 的值。
8、 一个自然数的算术平方根为 ,那么与这个自然数相邻的下一个自然数的算术平方根是_______
重点:对平方根概念的描述与刻画
难点:对平方根性质的探索
教学目标:
【知识与技能】
了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。
【过程与方法】
理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【情感、态度与价值观】
体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教具准备】小黑板 科学计算器
【教学过程】
一、导入
1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣。
2、板书:实数 1.1 平方根
二、新授
(一)探求新知
1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?
2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。
3、你还能举出哪些无理数?(,)、、1/3是无理数吗?
4、有理数和无理数�
(二)知识归纳:
1、板书:1.1平方根
2、李老师家装修厨房,铺地砖10.8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)
3、怎么算?每块地砖的面积是:10.8 120=0.09平方米。
由于0.32=0.09,因此面积为0.09平方米的正方形,它的边长为0.3米。
4、练习:
由于( )=400,因此面积为400平方厘米的正方形,它的边长为( )厘米。
5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。(也可叫做二次方根)
例如22=4,因此2是4的一个平方根;62=36,因此6是36的一个平方根。
6、说一说:9,16,25,49的一个平方根是多少?
(三)探求新知:
1、4的平方根除了2以外,还有别的数吗?
2、学生探究:因为(-2)2=4,因此-2也是4的一个平方根。
3、除了2和-2以外,4的平方根还有别的数吗?(4的平方根有且只有两个:2与-2。)
4、结论:如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与-r。
5、我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a”;
把a的负平方根记作-。
6、0的平方根有且只有一个:0。 0的平方根记作,即=0。
7、负数没有平方根。
8、求一个非负数的平方根,叫做开平方。
(四)巩固练习:
1、分别求下列各数的平方根:36,25/9,1.21。
(6和-6,5/3和-5/3,1.1和-1.1)(也可用号表示)
2、分别求下列各数的算术平方根:100,16/25,0.49。 (10,4/5,0.7)
三、小结与提高:
1、面积是196平方厘米的正方形,它的边长是多少厘米?
2、求算术平方根:81,25/144,0.16
知识与技能目标:
1、知道平方根的概念,能熟练地求出一个正数的平方根。
2、能描述平方根的特征,理解开方与乘方两者之间的联系与区别。
过程与方法目标:
让学生在观察、探索等活动中,获得对非负数的平方根特点的认识。
情感与态度目标:
1、学生积极参与数学活动,培养其对数学的好奇心与求知欲。
2、过数学活动,使学生获得成功的体验,并形成实事求是的态度。
一、内容和内容解析
1。内容
无限不循环小数;求算术平方根的更一般的方法———用有理数估算、用计算器求值。
2。内容解析
无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现
是一个无限不循环小数的结论。发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程。
用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力。
使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法。这完全可以让学生自己完成。
基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围。
二、目标和目标解析
1。教学目标
(1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值。
(2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律。
2。目标解析
(1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围。
(2)学生会概述利用计算器求一个正数的算术平方根的程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大(或缩小)100倍,它的算术平方根就扩大(或缩小)10倍。
三、教学问题诊断分析
用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间。为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求。
基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的。含义。
四、教学过程设计
1。梳理旧知,引出新课
问题1 (1)什么是算术平方根?怎样表示?
(2)负数有算术平方根吗?
师生活动 学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,例如,
=4;但实际生活中,我们还会遇到被开方数
不是一个数的平方数的情况,这时,它的算术平方根又该怎祥求呢?
设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容。
2。问题探究,学习新知
问题2 能否用两个面积为1dm
的小正方形拼成一个面积为2dm
的大正方形?
师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法。
追问(1) 拼成的这个面积为2dm
的大正方形的边长应该是多少呢?
师生活动:学生自行解答,教师对解答有困难的学生进行指导。
追问(2) 小正方形的对角线的长是多少呢?
师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长dm。
设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备。
问题3
有多大呢?为了弄清这个问题,请同学们探究“
在哪两个整数之间呢?”
师生活动:先让学生思考讨论并估计大概有多大,由直观可知
大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程。
追问(1) 那么
是1点几呢?你能不能得到
的更精确的范围?
师生活动:学生用试验的方法可得到平方数小于2且最接近的1位小数是1。4,而平方数大于2且最接近的1位小数是1。5,所以
大于1。4而小于1。5……,在此基础上教师按教科书上的推理进行讲解并板书。说明
是一个无限不循环小数,以及什么是无限不循环小数。并要求学生回忆以前学过的数,进行比较。
追问(2) 实际上,许多正有理数的算术平方根,如
等都是无限不循环小数。根据估计的大小的方法,请你估计的整数部分是多少?
设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的方法,并从中体会
是一个无限不循环小数。让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础。追问(2)主要为及时巩固估算方法
3。用计算器,求算术根
例1 用计算器求下列各式的值:
师生活动:教师指导学生操作,获得问题答案。解答完(2)后,让学生与上面所估计的
的大小进行比较,体会夹逼法的可行性。说明用计算器可以求出任意一个正数的算术平方根,但不同品牌的计算器,按键顺序可能有所不同。用计算器求出的算术平方根,有的是准确值,如题(1),有的是近似值,如题(2)。
设计意图:使学生会使用计算器求算术平方根。
练习 教科书第44页练习1。
师生活动:学生独立完成后交流。
设计意图:巩固计算器求算术平方根。
4。综合应用,巩固所学
现在我们来解决本章引言中的问题。
问题4 (1)你会表示
(2)用计算器求(用科学记数法把结果写成的形式,其中保留小数点后一位)
师生活动:学生理解题意,根据公式,可得,代入,利用计算器求出
设计意图:让学生体会计算器在解决实际问题中的应用。
问题5 利用计算器计算下表中的算术平方根,并将计算结果填在表中。
师生活动:学生计算填表。
追问(1) 你发现了什么规律?
师生活动:学生思考、讨论,教师归纳:被开方数的小数点向右或向左移动2位,它的算术平方根的小数点就相应地向右或向左移动1位。
追问(2) 你能说出其中的道理吗?
师生活动:学生讨论,交流,教师引导学生从被开方数扩大的倍数与其算术平方根扩大的倍数思考回答。即当被开方数扩大(或缩小)100倍,10000倍…时,其算术平方根相应地扩大(或缩小)10倍,100倍…。
追问(3) 用计算器计算
(精确到0。001),并利用刚才的得到规律说出的近似值。
师生活动:学生计算,并根据所获规律回答。
追问(4) 你能根据的值说出是多少吗?
师生活动:学生回答,因为被开方数30与3不符合上述规律,所以无法由的值说出是多少。
设计意图:巩固用计算器求算术平方根以及其在探究规律中的应用。
例2 小丽想用一块面积为400cm
的长方形纸片,沿着边的方向剪出一块面积为300cm
的长方形纸片,使它的长宽之比为3:2。她不知能否裁得出来,正在发愁。小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?
师生活动:教师出示问题,学生理解题意,学生可能会和小明有同样的想法,此时教师进行如下引导:
(1)你能将这个问题转化为数学问题吗?
(2)如何求出长方形的长和宽?
(3)长方形的长和宽与正方形的边长之间的大小关系是什么?
最后给出完整的解答过程。
设计意图:让学生体验估算的实际应用。
5。归纳小结:
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)利用夹逼法来求算术平方根的近似值的依据是什么?
(2)利用计算器可以求出任意正数的算术平方根或近似值吗?
(3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?
(4)怎样的数是无限不循环小数?
设计意图:让学生对本节课知识进行梳理,同时也帮助学生养成良好的习惯。
6。布置作业:
教科书习题6。1第6、9、10题。
五、目标检测设计
1。求
的整数部分。
【设计意图】主要考查学生的估算能力。
2。比较下列各组数的大小。
【设计意图】主要考查学生的估算和比较大小的能力。
【设计意图】主要考查学生对算术平方根概念以及有关规律的理解。
4。国际比赛的足球场的长在100m到110m之间, 宽在64m到75m之间, 现有一个长方形的足球场其长是宽的1。5倍, 面积为7560m, 问:这个足球场能用作国际比赛吗?
【设计意图】主要考查学生运用算术平方根解决实际问题的能力。
教学设计示例
一.教学目标
1、会用计算器求数的平方根;
2、通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
3、通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。
二.教学重点与难点
教学重点:用计算器求一个正数的平方根的程序
教学难点:准确用计算器求解一个正数的平方根
三.教学方法
讲练结合
四.教学手段
实物投影仪,计算器
五.教学过程
在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01, 等数的平方根,但对于如:2,3, ,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的`平方根。
复习提问学生有关乘方如何用计算器运算的步骤。熟悉计算器基本键的功能。
现在讲计算器打开,按 键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求 的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。
解:用计算器求 的步骤如下:
小结:在求解 的过程中,由于要用到 这个键上方 的功能,这就需要用上方标有“2F”的键来转换。
例2.用计算器求 的值。(保留4个有效数字)
解:用计算器求 的步骤如下:
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求 的值。
解:用计算器求 的步骤如下:
因为计算结果要求保留4个有效数字,
例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:
因为计算结果要求保留4个有效数字,
小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:
分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
解:按键的顺序是:显示612.65685
≈612.7
练习:
求下列正数的算术平方根:
(1)49 ; (2)0.81; (3)1.5376; (4)5 ; (6)260;
(7) ; (8)101.38
六.总结
利用计算器求解既快又精确,操作时要严格按照步骤执行。特别注意要用到第二功能键,首先要先按“2F”在按需要的键。由于各种计算器的键的功能各不相同,因此要注意操作顺序,查看说明书熟悉各键的具体功能。
八.作业
教材 A组1、2、3
九、板书设计
(一)创设情景,引入新课
师:小明到装饰城购买瓷砖,老板给了他一块面积为4dm2的正方形瓷砖,聪明的你能告诉小明这块瓷砖的边长吗?(幻灯片显示)
生:2dm(学生异口同声)
师:若面积为5 dm2 ,则�
(此时学生中出现了一阵骚动,有的学生还怀疑数字出错了,建议把数字改为9,并说出其中的原因。)
生3:要是能知道几的平方等于5就好了。(生3是一个基础较好的学生,很爱动脑筋,此时有不少学生对他的见解表示赞成)
(二)实践探索,揭示新知:
1、平方根的定义(幻灯片显示)
一般地,如果一个数的平方根等于a,那么这个数叫做a的平方根(square root), 也就是说,如果x2=a,那么x叫做a的平方根。
例如:22=4,(-2)2=4,±2叫做4的平方根
32=9,(-3)2=9,±3叫做9的平方根
2、探索平方根的性质:
a.看一看 :观察下面的式子: (幻灯片显示)
① 12=1, (-1)2=1
② 0.52=0.25, (-0.5)2=0.25
③ ( )2= , (- )2=
(1)请你写出一个与上面式子类同的式子;
(2)你发现了什么结论?
生1:互为相反数的两个数的平方相等。
生2:平方等于同一个数的数有两个,它们互为相反数。
生3:±1都是1的平方根
生4:一个正数的平方根有2个,一个正的,一个负的,并且互为相反数。 一个正数a有两个平方根,它们互为相反数。
(在学生的交流与探索之中,思维的火花不断绽放,逐渐地点出了新知。)
b.介绍平方根的表示方法: (幻灯片显示)
一个正数a有两个平方根,它们互为相反数。
正数a的正的平方根,记作" "
正数a的负的平方根,记作"- "
这两个平方根合在一起记作"± "
c. 想一想
在下列各括号中,能填写适当的数使等式成立吗?如果能够,请填写;如果不能,请说明理由,并与同学交流。
① ( )2=9 ( )2=25 ( )2=
② ( )2=2 ( )2=3 ( )2=0
③ ( )2=-2
(对于 ① 学生在较短的时间内很顺利地做完了;② ③ 较① 有一定的难度,有一部分的学生通过指点也能做出。通过以上的一组题目的讨论与交流,学生自然得出了平方根的性质。顺便提出开平方的定义,并作友情提醒。)
平方根的性质:
一个正数a有两个平方根,它们互为相反数。
0只有一个平方根,它是0本身;
负数没有平方根
(三)尝试应用,反馈矫正
下面请学生做这样一组题目(P63 例1),看谁做得既快又好(幻灯片显示题目)
(时间不到3分钟,学生基本上都做完了,接着,幻灯片出示该题的解题过程)
师:你在做这题时有没有什么疑惑的地方?
生5:我在做时动不动就漏写负的平方根。
生6:对于像3、5这样的数在求它们的平方根时,感觉不顺手。
生7:(-2)2怎么有两个平方根呢?
生8:我们有没有办法检查求出来的'结果对还是不对呢?
(学生之间进行交流……)
师:大家提出的问题都很好,回答也很好。
(让学生之间通过交流与思考,解决他们存在的困惑之处,教师作适当的补充;接着针对学生的情况,给出了下面的判断题)
考考你:判断下面的说法是否正确:(幻灯片出示题目)
1.-5是25的平方根;
2.25的平方根是-5;
3.0的平方根是0
4.1的平方根是1
5、(-3)2的平方根是-3
(让学生思考并说出错误的理由……)