初二上册数学教案(优秀5篇)

作为一名无私奉献的老师,可能需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。如下是细致的小编给大家收集的5篇初二上册数学教案,欢迎借鉴,希望能够帮助到大家。

八年级上册数学教案 篇1

【教学目标】

知识与技能

能确定多项式各项的公因式,会用提公因式法把多项式分解因式。

过程与方法

使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解。

情感、态度与价值观

培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值。

【教学重难点】

重点:掌握用提公因式法把多项式分解因式。

难点:正确地确定多项式的最大公因式。

关键:提公因式法关键是如何找公因式。方法是:一看系数、二看字母。公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。

【教学过程】

一、回顾交流,导入新知

【复习交流】

下列从左到右的变形是否是因式分解,为什么?

(1)2x2+4=2(x2+2);

(2)2t2-3t+1=(2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2;

(4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2.

问题:

1、多项式mn+mb中各项含有相同因式吗?

2、多项式4x2-x和xy2-yz-y呢?

请将上述多项式分别写成两个因式的乘积的形式,并说明理由。

【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y。

概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法。

二、小组合作,探究方法

教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂。

三、范例学习,应用所学

例1:把-4x2yz-12xy2z+4xyz分解因式。

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

例2:分解因式:3a2(x-y)3-4b2(y-x)2

【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法。

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)2·3a2(y-x)+4b2(y-x)2]

=-(y-x)2[3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)2·3a2(x-y)-4b2(x-y)2

=(x-y)2[3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

例3:用简便的方法计算:

0.84×12+12×0.6-0.44×12.

【教师活动】引导学生观察并分析怎样计算更为简便。

解:0.84×12+12×0.6-0.44×12

=12×(0.84+0.6-0.44)

=12×1=12.

【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

四、随堂练习,巩固深化

课本115页练习第1、2、3题。

【探研时空】

利用提公因式法计算:

0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

五、课堂总结,发展潜能

1、利用提公因式法因式分解,关键是找准最大公因式。在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂。

2、因式分解应注意分解彻底,也就是说,分解到不能再分解为止。

六、布置作业,专题突破

课本119页习题14.3第1、4(1)、6题。

数学八年级上册优秀教案 篇2

教学目标

知识与技能:

在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。

过程与方法:

通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。

情感态度与价值观:

通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。

教学重难点

教学重点:

掌握平行四边形的面积计算公式,并能正确运用。

教学难点:

平行四边形面积计算公式的推导。

教学工具

多媒体课件,平行四边形纸片,剪刀,学具袋

教学过程

教学过程设计

1 复习旧知

请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)

2 情境引入

(一)、故事激趣

同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)

(二)、学生思考、猜测

学生在猜测中明白:必须准确的知道两个图形的面积才能进行比较。可是学生只会计算长方形的面积,那么这节课我们就来研究平行四边形的面积,及时点出课题并板书课题:平行四边形的面积

3 探究新知

(一)利用方格,初步探究

1、以前用数方格的方法得到了长方形和正方形的面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。

课件出示:比较两个图形的大小,然后引进格子图。

师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)

2、同桌交流方法

3、生汇报想法

4、通过数方格你发现了什么?

生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等

5、小结(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间有某种特殊的联系呢?

如果,我用数方格的方法得到这个平行四边形的面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸?那我们能不能找到一个方法,适用于计算所有平行四边形的面积呢?

(二)动手操作,深入探究

1、师提醒大家思考:怎样才能得到平行四边形的面积呢?能不能把它转化成我们以前学过的图形呢?

2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。

师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。

(板书:割补法)

3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。

4、展示学生作品:不同的方法将平行四边形变成长方形。

提问:观察拼出的长方形和原来的平行四边形,你发现了什么?

平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。

引导学生用字母来表示:S表示面积,a表示底,h表 示 高 。那 么 面 积 公 式就是S = ah

(边说边板书)

4 学以致用

(一)。课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。

(板书:S=ah=6×4=24㎡)

(二)。课件出示练习题,学生独立完成。

1、

2、有一块地近似平行四边形,底43米,高20.1米,面积是多少平方米?

3、填表

4、判断:

(1) 平行四边形的底是7米,高是4米,面积是2 8米。 ( )

(2) a=5分米,h=2米,S=100平方分米。 ( )

5、下面对平行四边形面积的计算对吗?

6×3=18(平方米) ( )

6、下面对平行四边形面积的计算对吗?

8×7=56(平方分米) ( )

7、思考题:你有几种方法求下面图形的面积?

课后小结

回想一下刚才我们的学习过程,你有什么收获?

计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推

板书

平行四边形的面积

长方形的面积 = 长× 宽

↓ ↓ ↓

平行四边形的面积=底 × 高

八年级上册数学教案 篇3

第11章平面直角坐标系

11。1平面上点的坐标

第1课时平面上点的坐标(一)

教学目标

【知识与技能】

1。知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。

2。理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。已知点的坐标,能在平面直角坐标系中描出点。

3。能在方格纸中建立适当的平面直角坐标系来描述点的位置。

【过程与方法】

1。结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。

2。学会用有序实数对和平面直角坐标系中的点来描述物体的位置。

【情感、态度与价值观】

通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。

重点难点

【重点】

认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。

【难点】

理解坐标系中的坐标与坐标轴上的数字之间的关系。

教学过程

一、创设情境、导入新知

师:如果让你描述自己在班级中的位置,你会怎么说?

生甲:我在第3排第5个座位。

生乙:我在第4行第7列。

师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。

二、合作探究,获取新知

师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体

的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?

生:3排5号。

师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。谁来说说我们应该怎样表示一个物体的位置呢?

生:用一个有序的实数对来表示。

师:对。我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢?

生:可以。

教师在黑板上作图:

我们可以在平面内画两条互相垂直、原点重合的数轴。水平的数轴叫做x轴或横轴,取向右为

正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点。这样就构成了平面直角坐标系,这个平面叫做坐标平面。

师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了。现在请大家自己动手画一个平面直角坐标系。

学生操作,教师巡视。教师指正学生易犯的错误。

教师边操作边讲解:

如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标。在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0)。

教师多媒体出示:

师:如图,请同学们写出A、B、C、D这四点的坐标。

生甲:A点的坐标是(—5,4)。

生乙:B点的坐标是(—3,—2)。

生丙:C点的坐标是(4,0)。

生丁:D点的坐标是(0,—6)。

师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的坐标为(3,—2),怎样在平面直角坐标系中找到这个点呢?

教师边操作边讲解:

在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是—2的点,过这一点向y轴作垂线,纵坐标是—2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为—2,所以这就是坐标为(3,—2)的点。下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)这几个点。

学生动手作图,教师巡视指导。

三、深入探究,层层推进

师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限。注意:坐标轴不属于任何一个象限。在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?

生:都一样。

师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+。你能说出其他象限内点的坐标的符号吗?

生:能。第二象限内的点的坐标的符号为(—,+),第三象限内的点的坐标的符号为(—,—),第四象限内的点的坐标的符号为(+,—)。

师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号。同样的,我们由点的坐标也能知道它所在的象限。一点的坐标的符号为(—,+),你能判断这点是在哪个象限吗?

生:能,在第二象限。

四、练习新知

师:现在我给出几个点,你们判断一下它们分别在哪个象限。

教师写出四个点的坐标:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

生甲:A点在第三象限。

生乙:B点在第四象限。

生丙:C点不属于任何一个象限,它在y轴上。

生丁:D点不属于任何一个象限,它在x轴上。

师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点。

学生作图,教师巡视,并予以指导。

五、课堂小结

师:本节课你学到了哪些新的知识?

生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征。

教师补充完善。

教学反思

物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系。教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力。在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣。

第2课时平面上点的坐标(二)

教学目标

【知识与技能】

进一步学习和应用平面直角坐标系,认识坐标系中的图形。

【过程与方法】

通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力。

【情感、态度与价值观】

培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法。

重点难点

【重点】

理解平面上的点连接成的图形,计算围成的图形的面积。

【难点】

不规则图形面积的求法。

教学过程

一、创设情境,导入新知

师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来。下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,—3)这三个点。

学生作图。

教师边操作边讲解:

二、合作探究,获取新知

师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形?

生甲:三角形。

生乙:直角三角形。

师:你能计算出它的面积吗?

生:能。

教师挑一名学生:你是怎样算的呢?

生:AB的长是5—2=3,BC的长是1—(—3)=4,所以三角形ABC的面积是×3×4=6。

师:很好!

教师边操作边讲解:

大家再描出四个点:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并将它们依次连接起来看看形成的是什么

图形?

学生完成操作后回答:平行四边形。

师:你能计算它的面积吗?

生:能。

教师挑一名学生:你是怎么计算的呢?

生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4×3=12。师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形:

教师多媒体出示下图:

八年级上册数学教案 篇4

【教学目标】

知识目标:

解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:

(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:

充分调动学生学习的积极性、主动性

【教学重点】

单项式与多项式的乘法运算

【教学难点】

推测整式乘法的运算法则。

【教学过程】

一、复习引入

通过对已学知识的复习引入课题(学生作答)

1、请说出单项式与单项式相乘的法则:

单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂

例如:( 2a2b3c) (-3ab)

解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

= -6a3b4c

2、说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1

问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?

这便是我们今天要研究的问题。

二、新知探究

已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc

上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

结论单项式与多项式相乘的运算法则:

用单项式分别去乘多项式的每一项,再把所得的积相加。

用字母表示为:m(a+b+c)=ma+mb+mc

运算思路:单×多

转化

分配律

单×单

三、例题讲解

八年级上册数学教案 篇5

【教学目标】

知识目标:

解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:

(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:

充分调动学生学习的积极性、主动性

【教学重点】

单项式与多项式的乘法运算

【教学难点】

推测整式乘法的运算法则。

【教学过程】

一、复习引入

通过对已学知识的复习引入课题(学生作答)

1、请说出单项式与单项式相乘的法则:

单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂

例如:( 2a2b3c) (-3ab)

解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

= -6a3b4c

2、说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1

问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?

这便是我们今天要研究的问题。

二、新知探究

已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc

上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

结论单项式与多项式相乘的运算法则:

用单项式分别去乘多项式的每一项,再把所得的积相加。

用字母表示为:m(a+b+c)=ma+mb+mc

运算思路:单×多

转化

分配律

单×单

三、例题讲解

例计算:(1)(-2a2)· (3ab2– 5ab3)

(2)(- 4x) ·(2x2+3x-1)

解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

一键复制全文保存为WORD
相关文章