北师大版八年级数学上册教案(7篇)

作为一名教学工作者,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。教案应该怎么写才好呢?以下是人见人爱的小编分享的北师大版八年级数学上册教案(7篇),如果对您有一些参考与帮助,请分享给最好的朋友。

北师大版八年级上册数学教案 篇1

第二环节:探索发现勾股定理

1.探究活动一

内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:

问:你能发现各图中三个正方形的面积之间有何关系吗?

学生通过观察,归纳发现:

结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边。通过对特殊情形的探究得到结论1,为探究活动二作铺垫。

效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望。

2.探究活动二

内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

(1)观察下面两幅图:

(2)填表:

A的面积

(单位面积) B的面积

(单位面积) C的面积

(单位面积)

左图

右图

(3)你是怎样得到正方形C的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)。

学生的方法可能有:

方法一:

如图1,将正方形C分割为四个全等的直角三角形和一个小正方形。

方法二:

如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积。

方法三:

如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法。

(4)分析填表的数据,你发现了什么?

学生通过分析数据,归纳出:

结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质。由于正方形C的面积计算是一个难点,为此设计了一个交流环节。

效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.

3.议一议

内容:(1)你能用直角三角形的边长 , , 来表示上图中正方形的面积吗?

(2)你能发现直角三角形三边长度之间存在什么关系吗?

(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度。2中发现的规律对这个三角形仍然成立吗?

勾股定理:直角三角形两直角边的平方和等于斜边的平方。如果用 , 分别表示直角三角形的两直角边和斜边,那么。

数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名(在西方文献中又称为毕达哥拉斯定理)。

意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理。

效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力。

八年级数学上册的教案 篇2

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用

2.难点:灵活地应用公式法进行因式分解

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容

教学过程

一、回顾交流,导入新知

问题牵引:

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2

知识迁移:

2.计算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2

教师活动:引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2

学生活动:从逆向思维的角度入手,很快得到下面答案:

解:

(1)m2-8mn+16n2=(m-4n)2;

(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;

(4)a2-2ab+b2=(a-b)2.

归纳公式:完全平方公式a2±2ab+b2=(a±b)2

二、范例学习,应用所学

例1:把下列各式分解因式:

(1)-4a2b+12ab2-9b3;

(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4

例2:如果x2+axy+16y2是完全平方,求a的值

思路点拨:根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的'平方,由此相应求出a的值,即可求出a3

三、随堂练习,巩固深化

课本P170练习第1、2题

探研时空:

1.已知x+y=7,xy=10,求下列各式的值

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值

四、课堂总结,发展潜能

由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2

在运用公式因式分解时,要注意:

(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;

(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;

(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解

五、布置作业,专题突破

八年级数学上册的教案 篇3

教学目标

1.等腰三角形的概念。

2.等腰三角形的性质。

3.等腰三角形的概念及性质的应用。

教学重点:

1.等腰三角形的概念及性质。

2.等腰三角形性质的应用。

教学难点:

等腰三角形三线合一的性质的理解及其应用。

教学过程

1.提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:

①三角形是轴对称图形吗?

②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是。

问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

2.导入新课:要求学生通过自己的思考来做一个等腰三角形。

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴。

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的。高所在的直线呢?

结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

由此可以得到等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成“等边对等角”)

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

所以△BAD≌△CAD(SSS)

所以∠B=∠C

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以△BAD≌△CAD

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数。

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A

再由三角形内角和为180°,就可求出△ABC的三个内角。

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。

解:因为AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC

∠A=∠ABD(等边对等角)

设∠A=x,则∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°在△ABC中,∠A=35°,∠ABC=∠C=72°

[师]下面我们通过练习来巩固这节课所学的知识。

3.随堂练习:课本P51练习1、2、3. 阅读课本P49~P51,然后小结。

4.课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。

5.作业:课本P56习题12.3第1、2、3、4题。

八年级数学上册的教案 篇4

一、内容解析

本节课是在学生学习了平均数、中位数、众数这类刻画数据集中趋势的量后,学习刻画数据波动(离散)程度的量,即方差。

当两组数据的平均数相等或相近时,为了更好的做出选择经常要去了解一组数据的波动程度,可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一个量来刻画,自然引入方差。方差是能够反映一组数据的波动大小的一个统计量,应用它能解决很多实际问题。

教科书根据农科院选择甜玉米种子的背景提出问题,从统计上看,这个问题是要计算两组数据的平均数和比较它们的波动情况。为了直观看出数据的波动情况,教科书画出了两个散点图,通过观察散点图,可以比较两组数据的波动情况。这两个散点图使学生对数据偏离平均数的情况有一个直观的认识。在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的,既方差越大,数据的波动越大。

因此本节课的教学重点是:方差产生的必要性和应用方差公式解决实际问题。

二、目标和目标解析

(一)教学目标

1.理解方差概念的产生和形成的'过程。

2.会用方差的计算公式来比较两组数据的波动大小。

(二)教学目标解析

1.学生能由实际问题中感知,当两组数据的“平均水平”相近时,而实际问题中的意义却不一样,需出现另一个量来刻画,分析数据的差异,即方差。

2.学生能根据已知条件计算方差,比较两组数据的波动大小。

三、教学问题诊断分析

由于这节课是方差的第一节课,用方差来刻画数据的离散程度,从方差公式的结构上分析了方差是如何刻画数据的波动的,这些学生理解起来有一定的难度,以致应用时常常出现计算的错误,教师要剖析公式中每一个元素的意义,以便学生理解和掌握

本节课的教学难点为:理解方差的意义

四、教学过程设计

(一)情景引入

问题1教科书第124页根据这些数据估计,农科院应该选择哪种甜玉米种子呢?

师生活动:学生想到计算它们的平均数。教师把学生分成两组分别用计算器计算这两组数据的平均数。(请两名同学到黑板板书)

设计意图:让学生明确农科院应该选择哪种甜玉米种子?需关注平均产量

追问:怎样估计这个地区这两种甜玉米的平均产量?这能说明甲、乙两种甜玉米一样好吗?

设计意图:让学生明确可以用样本平均数估计总体平均数,发现甲、乙两种甜玉米的平均产量相差不大,但需选择哪种甜玉米种子?仅仅知道平均数是不够的

(二)探究新知

问题2如何考察甜玉米产量的稳定性呢?请设计统计图直观地反映出甜玉米产量的分布情况。

师生活动:教师引导学生用折线图或散点图反映数据的分布情况,画出折线图或散点图后,小组讨论,得到甲种甜玉米的产量波动较大,乙种甜玉米的产量波动较小。

设计意图:让学生明白当两组数据的平均数相近时,为了更好的做出选择需要去了解数据的波动大小,画折线图或散点图是描述数据波动大小的一种方法,进而引出如何用数值表示一组数据的波动?

问题3从图中看出的结果能否用一个量来刻画呢?

师生活动:教师直接给出方差公式,并作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小。教师说明,平方是为了在表示各数据与其平均数的偏离程度时,防止正偏差与负偏差的相互抵消。取各个数据与其平均数的差的绝对值也是一种衡量数据波动情况统计量,但方差应用更广泛。整体的波动大小可以通过对每个数据的波动大小求平均值得到。

设计意图:让学生明白方差是能够反映一组数据的波动大小的一个统计量,并从方差公式中得到方差越大,数据的波动越大;方差越小,数据的波动越小。

问题4利用方差公式分析甲、乙两种甜玉米的波动程度。

师生活动:教师示范:

关注学生是否会代值到公式中,从结果中能否知道哪种玉米的波动较大。

设计意图:使学生深刻体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识。

追问:农科院应该选择哪种甜玉米种子呢?

设计意图:让学生类比用样本的平均数估计总体的平均数一样,用样本的方差来估计总体的方差,但用样本的方差来估计总体的方差时,先要计算它们的平均数。

(三)运用新知

例1在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)分别是:

甲163 164 164 165 165 166 166 167

乙163 165 165 166 166 167 168 168

哪个芭蕾舞团女演员的身高更整齐?

师生活动:引导学生分析:(1)题目中“整齐”的含义是什么?学生通过思考可以回答出整齐即身高的波动小,所以要研究两组数据的波动大小,即求方差。

北师大版八年级上册数学教案 篇5

一、指导思想

贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

二、教材分析

义务教育课程标准实验教科书,人教版八年级数学上册共_章,__大节。

“三角形”我们并不陌生,但是三角形的内角和等于180度如何证明和怎样运用这个结论求出多边形的内角和,这些问题可以在本章中得到解决,而且能学到研究几何图形的重要思想和方法。

“全等三角形”会带领同学们认识形状、大小相同的图形,探索两个三角形形状、大小相同的条件,了解角平分线的性质。

在我们周围的世界,会看到许多对称的现象,怎样认识轴对称与轴对称图形十三章“轴对称”会告诉答案。

在“整式的乘除与因式分解”中,我们可以用含有字母的式子表示实际问题中的数量关系,解决更多与数量关系有关的问题,加深对“从数到式”这个由具体到抽象的过程的认识。

我们知道数有整数和分式之分,式也有整式和分式之别。在“分式”这章中你将看到分数的影子。学习了分式,你会认识到它是我们研究数量关系并用来解决问题的重要工具。

三、教学措施

1、认真学习钻研新课标,掌握教材,编写好“教案”“学案”。

2、认真备课,争取充分掌握学生动态。

认真钻研大纲和教材,做好各章节的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以提高自己的教学理论水平和教学实践能力。

3、认真上好每一堂课。

创设教学情境,激发学习兴趣,爱因斯曾经说过:“兴趣是的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。想尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。

4、落实每一堂课后辅助,查漏补缺。

全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学习障碍,增强学习信心,尽可能“吃得了”。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。

5、积极与其它老师沟通,加强教研教改,提高教学水平。

6、经常听取学生的合理化建议。

7、深化两极生的训导。

八年级是承上启下的非常关键的一年,学习习惯、学习方法的养成在此一举。因此,在教学中要密切注意学生的思想动态,及时引导,使好的更好,差的迎头赶上。尽可能多的抓学生,面广,量大,同时也要注意保质保量的完成教学任务。

八年级数学上册的教案 篇6

教学目标

一、教学知识点:

1、旋转的定义

2、旋转的基本性质

二、能力训练要求:

1.通过具体实例认识旋转,理解旋转的基本涵义。

2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质

三、情感与价值观要求

1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识

2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观

教学重点:

旋转的基本性质

教学难点:

探索旋转的基本性质

教学方法:

1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。

2、采用多媒体课件辅助教学。

教学过程:

一。巧设情景问题,引入课题

日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景)。

(1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

1.在这些转动的现象中,它们都是绕着一个点转动的

2.每个物体的转动都是向同一个方向转动

3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变

4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化。同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转。

二。讲授新课

在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate)。这个定点称为旋转中心,转动的角称为旋转角。注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度。在物体绕着一个定点转动时,它的形状和大小不变。因此,旋转具有不改变图形的'大小和形状的特征。

议一议:(课本67页)答:

(1)旋转中心是O点,旋转角是∠AOD。旋转角还可以是∠BOE。

(2)四边形AOBC绕O点旋转到四边形DOEF的位置。这时点A旋转到点D的位置,点B旋转到点E的位置。

(3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的。同样,线段OB与OE是相等的。

(4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的。

(4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的。

看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点。从刚才大家得出的结论中,能否总结出旋转的性质呢?

答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的。

因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的。

由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度。任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等对应点到旋转中心的距离相等。

[例1](课本68页例1)

[师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出。

解:(见课本68页)

书上68页做一做

三。课堂练习

课本P69随堂练习

1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°

四。课时小结

五。课后作业:课本P69习题3.4 1、2、3

六。活动与探究

1、分析图中的旋转现象过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律

结果:旋转现象为:

整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的

整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的

整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的

2、图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?

过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系

结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的

整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°前后的图形共同组成的

整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的

北师大版八年级上册数学教案 篇7

一。教学目标:

1.了解方差的定义和计算公式。

2.理解方差概念的产生和形成的过程。

3.会用方差计算公式来比较两组数据的波动大小。

二。重点、难点和难点的突破方法:

1.重点:方差产生的必要性和应用方差公式解决实际问题。

2.难点:理解方差公式

3.难点的突破方法:

方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

三。例习题的意图分析:

1.教材P125的讨论问题的意图:

(1).创设问题情境,引起学生的学习兴趣和好奇心。

(2).为引入方差概念和方差计算公式作铺垫。

(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。

(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

2.教材P154例1的设计意图:

(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

四。课堂引入:

除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

五。例题的分析:

教材___例_在分析过程中应抓住以下几点:

1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

3.方差怎样去体现波动大小?

这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

六。随堂练习:

1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

问:(1)哪种农作物的苗长的比较高?

(2)哪种农作物的苗长得比较整齐?

2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

测试次数1 2 3 4 5

段巍13 14 13 12 13

金志强10 13 16 14 12

参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

2.__的成绩比__的成绩要稳定。

七。课后练习:

一键复制全文保存为WORD
相关文章