八年级数学教案优秀7篇

作为一位优秀的人民教师,可能需要进行教案编写工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么问题来了,教案应该怎么写?以下是人见人爱的小编分享的八年级数学教案优秀7篇,如果能帮助到您,小编的一切努力都是值得的。

初中数学八年级教案案例 篇1

二次根式

一、教学目标

1、了解二次根式的意义;

2、 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3、 掌握二次根式的性质 和 ,并能灵活应用;

4、通过二次根式的计算培养学生的逻辑思维能力;

5、 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美。

二、教学重点和难点

重点:(1)二次根的意义;(2)二次根式中字母的取值范围。

难点:确定二次根式中字母的取值范围。

三、教学方法

启发式、讲练结合。

四、教学过程

(一)复习提问

1、什么叫平方根、算术平方根?

2、说出下列各式的意义,并计算

(二)引入新课

新课:二次根式

定义: 式子 叫做二次根式。

对于 请同学们讨论论应注意的问题,引导学生总结:

(1)式子 只有在条件a≥0时才叫二次根式, 是二次根式吗? 呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次

根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

例1 当a为实数时,下列各式中哪些是二次根式?

例2 x是怎样的实数时,式子 在实数范围有意义?

解:略。

说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义。

例3 当字母取何值时,下列各式为二次根式:

(1) (2) (3) (4)

分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式。

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时, 是二次根式。

(2)-3x≥0,x≤0,即x≤0时, 是二次根式。

(3) ,且x≠0,∴x>0,当x>0时, 是二次根式。

(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.当x>2时, 是二次根式。

例4 下[]列各式是二次根式,求式子中的字母所满足的条件:

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即: 只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

解:(1)由2a+3≥0,得 。

(2)由 ,得3a-1>0,解得 。

(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式。 所以所求字母x的取值范围是全体实数。

(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

初中数学八年级教案案例 篇2

探索勾股定理(二)

教学目标:

1、 经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。

2、 掌握勾股定理和他的简单应用

重点难点:

重点: 能熟练运用拼图的方法证明勾股定理

难点:用面积证勾股定理

教学过程

七、 创设问题的情境,激发学生的学习热情,导入课题

我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7 图1—7)接着提问:大正方形的面积可表示为什么?

(同学们回答有这几种可能:(1) (2) )

在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。

= 请同学们对上面的式子进行化简,得到: 即 =

这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。

八、 讲例

1、 飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?

分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的 米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。

解:由勾股定理得

即BC=3千米 飞机20秒飞行3千米,那么它1小时飞行的距离为:

答:飞机每个小时飞行540千米。

九、 议一议

展示投影2(书中的图1—9)

观察上图,应用数格子的方法判断图中的三角形的三边长是否满足

同学在议论交流形成共识之后,老师总结。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、 作业

1、 1、课文 P11§1.2 1 、2

2、 选用作业。

八年级数学教案 篇3

一、创设情境

1、一次函数的图象是什么,如何简便地画出一次函数的图象?

(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象)。

2、正比例函数y=kx(k≠0)的图象是经过哪一点的直线?

(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线)。

3、平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?

4、在平面直角坐标系中,画出函数的图象。我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?

二、探究归纳

1、在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点。

2、求直线y=-2x-3与x轴和y轴的交点,并画出这条直线。

分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.

解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点。

过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.

所以一次函数y=kx+b,当x=0时,y=b;当y=0时,。所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是。

三、实践应用

例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式。

分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值。

解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.

例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积。

分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?

八年级数学教案 篇4

教学目标:

1、掌握一次函数解析式的特点及意义

2、知道一次函数与正比例函数的关系

3、理解一次函数图象特点与解析式的联系规律

教学重点:

1、 一次函数解析式特点

2、 一次函数图象特征与解析式的联系规律

教学难点:

1、一次函数与正比例函数关系

2、根据已知信息写出一次函数的表达式。

教学过程:

Ⅰ.提出问题,创设情境

问题1 小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.

分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是

s=570-95t.

说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.

问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.

分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.

问题3 以上问题1和问题2表示的这两个函数有什么共同点?

Ⅱ.导入新课

上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称

y是x的正比例函数。

例1:下列函数中,y是x的一次函数的是( )

①y=x-6;②y=2x;③y=;④y=7-x x8

A、①②③B、①③④ C、①②③④ D、②③④

例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?

(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);

(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);

(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;

(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).

(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;

(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;

(7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答. 解 (1)a?20,不是一次函数. h

(2)L=2b+16,L是b的一次函数.

(3)y=150-5x,y是x的一次函数.

(4)s=40t,s既是t的一次函数又是正比例函数.

(5)y=60x,y是x的`一次函数,也是x的正比例函数;

(6)y=πx2,y不是x的正比例函数,也不是x的一次函数;

(7)y=50+2x,y是x的一次函数,但不是x的正比例函数

例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.

分析 根据一次函数和正比例函数的定义,易求得k的值.

解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?

若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.

例4 已知y与x-3成正比例,当x=4时,y=3.

(1)写出y与x之间的函数关系式;

(2)y与x之间是什么函数关系;

(3)求x=2.5时,y的值.

解 (1)因为 y与x-3成正比例,所以y=k(x-3).

又因为x=4时,y=3,所以3= k(4-3),解得k=3,

所以y=3(x-3)=3x-9.

(2) y是x的一次函数.

(3)当x=2.5时,y=3×2.5=7.5.

1. 2

例5 已知A、B两地相距30千米,B、C两地相距48千米.某人骑自行车以每小时12千米的速度从A地出发,经过B地到达C地.设此人骑行时间为x(时),离B地距离为y(千米).

(1)当此人在A、B两地之间时,求y与x的函数关系及自变量x取值范围.

(2)当此人在B、C两地之间时,求y与x的函数关系及自变量x的取值范围.

分析 (1)当此人在A、B两地之间时,离B地距离y为A、B两地的距离与某人所走的路程的差.

(2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.

解 (1) y=30-12x.(0≤x≤2.5)

(2) y=12x-30.(2.5≤x≤6.5)

例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.

分析 因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.

解 在第一阶段:y=3x(0≤x≤8);

在第二阶段:y=16+x(8≤x≤16);

在第三阶段:y=-2x+88(24≤x≤44).

Ⅲ.随堂练习

根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?

2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不

超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]

Ⅳ.课时小结

1、一次函数、正比例函数的概念及关系。

2、能根据已知简单信息,写出一次函数的表达式。

Ⅴ.课后作业

1、已知y-3与x成正比例,且x=2时,y=7

(1)写出y与x之间的函数关系.

(2)y与x之间是什么函数关系.

(3)计算y=-4时x的值.

2、甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.

3、仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系.

4、今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.

5、按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.

八年级数学教案 篇5

一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

1.平移

2.平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。⑶平移不改变图形的大小和形状(只改变图形的位置)。(4)平移后的图形与原图形全等。

3.简单的平移作图

①确定个图形平移后的位置的条件:

⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。

②作平移后的图形的方法:

⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;

二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

1.旋转

2.旋转的性质

⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

⑷旋转前后的两个图形全等。

3.简单的旋转作图

⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

三、分析组合图案的形成

①确定组合图案中的“基本图案”

②发现该图案各组成部分之间的内在联系

③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;

⑸旋转变换与轴对称变换的'组合;⑹轴对称变换与平移变换的组合。

八年级数学教案 篇6

一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

1、平移

2、平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。⑶平移不改变图形的大小和形状(只改变图形的位置)。(4)平移后的图形与原图形全等。

3、简单的平移作图

①确定个图形平移后的位置的条件:

⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。

②作平移后的图形的方法:

⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;

二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

1、旋转

2、旋转的性质

⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

⑷旋转前后的两个图形全等。

3、简单的旋转作图

⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

三、分析组合图案的形成

①确定组合图案中的“基本图案”

②发现该图案各组成部分之间的内在联系

③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;

⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。

初中数学八年级教案案例 篇7

探索勾股定理(一)

教学目标:

1、 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、 创设问题的情境,激发学生的学习热情,导入课题

出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2 (书中的P2 图1—2)并回答:

1、 观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

3、 图1—2中,A,B,C 之间的面积之间有什么关系?

学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢?

二、 做一做

出示投影3(书中P3图1—4)提问:

1、图1—3中,A,B,C 之间有什么关系?

2、图1—4中,A,B,C 之间有什么关系?

3、 从图1—1,1—2,1—3,1|—4中你发现什么?

学生讨论、交流形成共识后,教师总结:

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、 议一议

1、 图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、 你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:

直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

也就是说:如果直角三角形的两直角边为a,b,斜边为c

那么

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、 分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、 想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

五、 巩固练习

1、 错例辨析:

△ABC的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足 =25

即:c=5

辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

△ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC是直角三角形,第三边C也不一定是满足 ,题目中并为交待C 是斜边

综上所述这个题目条件不足,第三边无法求得。

2、 练习P7 §1.1 1

六、 作业

课本P7 §1.1 2、3、4

一键复制全文保存为WORD
相关文章