电气自动化运用电力电子技术、微机控制技术和计算机网络技术来实现电气自动控制,以计算机技术实现程序控制,并且通过系统集成实现自动控制电力系统和运行维护功能。其明显特征是集成化、智能化和综合化、故障反映迅速自动化。这里是爱岗敬业的小编帮家人们收集的9篇电气自动化论文的相关文章,欢迎参考,希望可以帮助到有需要的朋友。
1、电气工程自动化控制系统发展情况
智能化、自动化是现代社会工业生产的主流发展趋势。随着经济的发展和科学的进步,企业生产自动化和智能化程度逐步加深。生产自动化和智能化固然是企业竞争发展的需要,同时也是高技术水平的电气工程支持的结果。现代化工业生产离不开电气工程,只有电气工程实现自动化,工业生产才能实现自动化、智能化。当前我国电气自动化发展情况如下。
1.1电气自动化工程控制系统信息集成化
在电气自动化工程控制系统中,信息技术主要体现在如下两个方面:一是通过信息技术的应用,管理更加深入。在以信息技术为基础开发的先进工具,比如软件系统的帮助下,企业管理层能够对企业人力资源、财务核算、生产经营等信息实现动态跟踪和详细掌握,对于生产线上的具体情况也能有着直观的感受,对于企业管理层进行决策具有重大基础作用。二是信息技术的应用,加强了控制系统和生产设施、设备间的联系。
1.2电气自动化工程控制系统语言规范性提高
经过几十年的发展,作为人与控制系统间沟通的工具,计算机语言发生了巨大的变化。现在的计算机语言具有更加宽泛的适用范围和更加灵活的使用特性,兼容性和操作性大幅改善,工作效率和集成程度更高,编写使用更加容易。同时,计算机语言的编写规范更加趋于一致,使得跨平台使用成为可能,系统维护的难度也大为降低。
1.3电气自动化工程分布式控制系统缺陷较大
当前电气自动化工程主要采用分布式控制系统,又称为分散式控制系统。就目前使用情况来看,这个系统所具有的缺陷和不足还是比较明显的。由于该系统属于模拟数字的混合系统,所使用的仪表装置仍然是模拟的传统型仪表,可靠性较差,且使用维护难度很高。另外,由于分散式系统生产厂家的标准不统一,导致零部件间不具备互换性,维护成本和购买成本都很高。
2、电气工程自动化在配电系统中的应用
2.1就地控制技术
该项技术通过电压加时限的检测,重合器进行多次重合达到隔离电网故障部位的目的,并不需要远程通信的支持。具体工作流程如下:电网故障发生后,由于重合器无法合闸引发跳闸,在没有电压支持的情况下,故障部位前后的负荷开关分开,重合器切到重合状态。因为负荷开关进行了延时设置,导致开关闭锁,从而达到故障隔离的目的。此时将重合器合闸连接上开关,即可恢复送电。
2.2远程遥控技术
该技术分为负荷开关、馈线的自动化控制中心和馈线的远程遥控终端三大部分。其中最重要的部分是远程遥控终端FTU,远程遥控技术以信息技术为基础,首先进行现场开关信息的采集,根据预先设定的条件判断故障与否,再通过馈线的自动化控制中心对FTU故障信息的采集和分析,实施故障区域定位,在此基础上,通过远程遥控线路开关,对正常区域恢复供电。
3、电气工程自动化在电网调度运行中的应用
电网调度自动化是电气自动化在电网调度运行中的主要应用。它是当前电力系统调度管理的基本手段,对于保障电网正常平稳运行和供电安全具有重大意义,是国民经济发展和社会和谐稳定的必要条件。就电气设备而言,电网调度自动化分为运动装置和调度主站体系两个部分。通过电网调度自动化系统,调度人员对电网的潮流、电压、负荷、周波、设备状况等信息及时掌握, 与此同时,通过电网调度自动化系统的调度优化,努力提高能源利用效率,在保障供电充足的前提下,尽可能地的降低发电损耗。此外,加强电网安全运行管理,科学分析电网安全事故原因,在改进技术和积累经验的基础上,提高电力系统应急情况处理能力,及时发现并排除安全隐患,减少电力系统安全事故的发生。
4、关于加强电气工程自动化控制系统建设的建议
4.1推动电气自动化建设与数字化建设的融合
数字化是电气工程自动化与信息化高度结合的产物,是自动化实施创新的结果。数字化技术能够将大规模高分辨率的、动态表现的、多维空间的信息和地球相关的数据信息整
4.2加强电气自动化企业与相关专业院校之间的合作
电气自动化技术科技含量要求很高。它的发展与更新,离不开大专院校、科技单位的支持与合作,生产企业要加强与科研院所的交流联系,采用产学研相结合的办法,加强技术开发和实践应用的互动。企业可以委托大中院校培养对口专业技术人才,形成人才梯队,建立适合企业发展需要的健康的人才培育机制。同时,科研院所、大中院校可以与企业合作在企业内建立研发基地,研发成果直接在企业进行实践检验,就地开展生产指导。不仅可以有效缩短研发周期,降低研发费用,还有利于企业生产技术的及时更新。
4.3加快现场总线技术的创新使用,降低电气自动化的运行成本
计算机与网络技术的高度应用是电气自动化工程控制系统未来的发展方向。随着网络技术在电气自动化工程中应用水平的提高,总线技术成为当代电气自动化控制的重要特征。总线技术的存在,使得系统的顶层信息与生产一线的信息完美结合,整体工作效率更为突出。
5、结束语
自动化、智能化和数字化是现代工业生产的主流发展方向,也是工业企业核心竞争力的重要表现。加强企业电气自动化建设,对于缩短生产周期、降低人力成本、提高生产质量和精度、增强企业市场竞争力具有极为重要的积极作用。企业要加快技术革新步伐,不断推进电气自动化建设,为企业实现长期可持续健康发展做出保障。
1.1发电效率明显提升
而原有传统的火力发电设备多数都需要较多的人员进行实际操作及控制,工作效率低,而将电气自动化技术应用于火力发电,可以使火力发电实现自动化控制,提高发电效率及电能产昌,更好满足社会需求。
1.2发电成本显著降低
用于火力发电的原材料通常都是煤炭及石油等可燃原料,原有的火力发电技术存在诸多问题,使得原材料的燃烧率不高,不能够充分燃烧而释放出全部的能量,这使得发电效果平平,投入了较多的原料却没有得到预期的电量,也就增加了发电成本。而将电气自动化技术应用到火力发电中,就可以对各种燃烧方法进行自动化控制,从而实现燃料的充分燃烧,使得燃料的浪费率大为降低,也就相应的节约了发电成本。
1.3资源得到最优化配置
在火力发电的过程中,所需要的是所有的资源是否能够全面合理的得以有效的利用,其结果对于电厂的发电效率有着直接的影响,过去较为滞后的发电技术,对于电力设备和原材料以及工作人员都没有进行更好更全面的加以利用,人员和原材料的浪费,设备发生了故障没有得到及时的发现和维护,对于火力发电在一定程度上都造成了损失。然而,自从电气自动化技术实现之后,对于设备运行中出现的障碍,能够得以有效的及早发现,在操作模式方面可以实现人机操作,时期资源在使用的过程中,能够将其最大的可利用价值给予充分发挥。
摘 要:在这个科学技术高速发展的时代,我国的经济建设也初见成效,在保证了物质条件的基础之上,城市的建设成为了社会经济发展的重要推动力,而作为建设城市的主要因素,电气工程与自动化控制的发展对于提升居民的生活质量起到了重要的推动作用,但不可否认的是,目前我国的电气工程与自动化中仍然存在着这样或者那样的问题,这些问题的存在严重制约了其发展速度,文章将就这些问题的解决进行深层次的探究以及阐述。
【关键词】控制方式 电气工程 自动化控制
在最近几年,我国的各行各业的自动化程度已经得到了极大程度地发展,一些尖端科学技术的引入,提升了各个产业中产品的技术含量,这就对电气工程与自动化控制领域中的技术型人才提出了更高的要求,为此有必要对这一领域进行更加深入的探究。
1 电气工程自动化的相关处理
我们知道,通过一定的措施可以有效实现系统在电气方面的自动化,而科学地选择设备,可以有效保障系统的安全运行,减少故障的发生率,经实践证明,如果经过长期地检验,系统如果在较为恶劣的条件下仍能够保持运行的稳定性和可靠性,可以最大程度地保障其安全系数,要想使系统中的误差保持最小,必须将原有的物料比例进行一定规律地排列,并通过一定的技术手段对电机的转数自动记录,操作人员可以根据当时的运行状态来对误差的扰动进行相关的判定,为流量的波形分析提供科学的依据。而当今除了动态显示工作流程,大多数的系统都采用了二次开发,这种功能对于扩充系统非常有利,同时为全面实现自动化控制提供了界面,而为了保障设备运行的安全,一些必要的辅助电气设施十分必要,原因在于其能够使电器组件相互关联、相互协调,而相互关联之后的组合,我们称之为控制回路。
2 实现自动化控制的基本方式
就目前而言,在变电站自动化系统当中,普遍应用了现场总线、以太网等网络技术,这些计算机技术在电气工程与自动化控制领域中发挥着巨大的作用,经过多年的发展,运行已经逐渐趋于成熟,而这极大程度地推进了电气设备智能化的进程,并且其为系统的网络控制打下了坚实的基础。通过多年的实践我们发现,现场总线更加具有实际作用,同时它的针对性也非常强,它可以在各种间隔中实现相应的功能,设计人员可以根据实际的情况对其进行相关设计,现场总线的优势在于其大大减少了设备和组件,远程操作即可对变送器进行模拟变量,最大程度上节约了资金投入,减少了维护设备的次数,而且其各个子系统中的装置都是独立工作的,而装备之间的联系仅仅依靠网络,如此一来,其中一个设备发生故障,则不会波及其他设备,更不会像以往那样导致整个系统的瘫痪,毫不夸张地说,现场总线的控制方式是计算机监控系统今后重要的发展趋势。
而现对于现场总线的监控方式,集中的控制方式也具有诸多优点,这些优点包括集中监控方式维护较为方便,且其防护要求并不是十分高,设计工作相对简单,从集中控制这个名字我们可以看出,其主要的工作方式是将其大多数的主要功能集中到同一个处理器,这对与处理器来讲,压力巨大,且任务相对繁杂,这严重制约了处理器的处理速度,而对所有的电气设备进行监控,控制对象数量规模庞大,这会导致大规模的电缆增加,投入的资金也随之增多,随之而来的问题是电缆所带来的干扰会在很大程度上影响系统整体的可靠性,而在实际情况中,辅助接点常常会出现不到位的情况,进而使设备无法正常运行,造成了查线困难,维护工作的工作量被大幅度增加,增加了操作失误的可能。
而相对于前两种控制方式,远程控制方式可以大量节省安装的费用,减少电缆的使用量,在节约材料的同时提高性能,且其具有灵活多变的基本特点,但是这种监控方式适用于小系统,对于构建整个的电气工程自动化系统并不适用。
3 介入微机系统
自从人类步入21实际以来,计算机技术的发展势头十分迅猛,而借助于计算机技术可以有效提高控制技术水平,但随之带来的问题是,电气控制和机炉控制越来越不协调,为了缓解这一问题,我们应当充分利用DCS系统,以此来提升控制水准。利用DCS系统可以使电气防失误操作更加简便,同时电气设备的控制与报警功能结合起来,可以提高电气控制的可靠性,我们知道当今的电力系统是一个各个组件相互影响、相互协调的一个整体,而其中的用电设备会受到环境的影响,极易发生故障,而这些设备基本都非常贵重,一旦发生故障将带来较为惨重的经济损失,同时还会对人民群众的生活以及日常的生产造成不同程度的影响,电力系统有很多地方都与其他系统不同,具有一定的特殊性,当今电力系统的发展方向是远距离、大容量、高电压,此外,运行方式相比以前也复杂很多,随之带来的问题是系统中的继电装置将承受巨大的压力,为了适应当前高稳定性、高可靠性的要求,目前已经出现了各种新型的继电装置,这些新涌现的继电装置较从前的`装置的在性能方面得到了较大程度的提高。
4 自动化控制技术
快速高效自动控制技术的工作原理是,系统得到数据以后向指定的设备发出指令,这种指令的传输是即时的,而因为各个设备的代码不同,所以指令的错误率几乎为零,相比于传统的人工操作大大提高了准确程度,同时这种技术的交互能力非常卓越,系统完全可以通过交互实现控制中心的信息反馈,在最大程度上保障了控制的效率和准确程度。而除了上述优点之外,自动化控制技术还十分有利于监控,众所周知,现在的电气工程都是全天作业,人们结合长时间实践积累出的经验加以探究,深夜是系统故障的高发时段,因为这一时间工作人员的精神疲惫,极易造成管理上的疏忽,而传统的模式根本不可能实现系统的全程监控,而数字化自动化控制技术的出现在最大限度上解决了这个问题,进而降低了故障的发生几率,保障了工程的稳定运行,真正实现了管理和控制系统的高效性。
自动化控制技术的另一大优势就是其具有非常高的安全性能,一切工程的前提都是要在保证安全的前提下进行的,相信每一个工程管理者都明白生命高于一切的道理,同时我们也深知,电气工程的危险性也是很高的,在过去由于机械故障和人为失误造成的安全事故时有发生,而随着自动化控制技术的出现,使技术优势得到了最大限度的发挥,人们可以快速地发现系统运行中发生的种种情况,并对其进行及时的维修,大大降低了威胁程度。
5 自动化控制技术的发展方向
最近几年OPC技术被广泛地应用到了各行各业的生产当中,该技术运用了全新的平台和软件,使计算机技术渗透到了电气工程中,让两者的联系更加紧密,可以说当今的电气工程如果缺少了计算机技术便难以运行,在电气工程中,计算机技术已� 网络技术和以太网技术的广泛应用,印证了IT平台和自动化技术的高度整合,可以说在电气工程的自动化控制领域,网络技术以及多媒体技术具有非常广阔的发展前景,管理工作者可以通过这些技术轻而易举的获取一些信息和数据,同时可以对生产的过程进行全面的动态监控,在最短的时间里就可以全面了解与生产相关的基本信息,而计算机软件的重要程度在当今的电气工程领域也越发重要,这说明现在的单一设备已经逐渐向集成方向转化。
6 结论
自动化控制在电气工程领域中的应用情况可以说是一个国家工业发展的重要依据,毫不夸张地说,电气自动化是现代工业的支柱和基础,缺少了电气自动化,现代工业的发展便无从谈起,而当今的电力系统中所有的设备都是开放式的,非常容易受到环境的影响和人为的干扰,实现自动化控制可以最大限度地降低这种影响和干扰,因此,自动化控制在电气工程领域发挥的巨大作用应该得到人们的重视。
[1] 王术贺,李广东。浅析电气自动化控制系统的应用及发展趋势[J]。黑龙江科技信息,20xx(20)。
[2] 武芳军。工业电气自动化的重要性和发展趋势[J]。中小企业管理与科技(上旬刊),20xx(4)。
[3] 李修伟,陈广文。浅析电气自动化控制系统的应用及发展趋势[J]。民营科技,20xx(1)。
1、智能化技术的应用特点分析
如今,电气自动化已然步入了智能化阶段,最显着的标志即智能控制器的实现,同传统控制器相比,现代化智能控制器的各方面性能均有大幅提升,并具有如下特征:
1)实现了无人超控。智能技术最为显着的优势,即无论何种情况,在电气工程自动化控制工作中,智能控制器技术都比传统控制器更受肯定。这主要是由于系统控制水平是由下降及响应时间、鲁棒性变化等来进行调节的,此三者的�
2)无需构建控制模型。智能控制器较传统控制器而言更具优势,这主要体现为:智能技术的应用实现了控制器紧密系数的提高,传统控制器运作过程中由于技术欠佳,因此,一旦遇到复杂程度较大的动态方程控制对象时,很难对该控制对象进行严密而有效的掌控,因而严重影响了受控对象的模型设计。由于智能技术的应用,因此,不会出现受控对象模型设计难以预测与评估等情况的发生。
3)数据处理过程中具有较高的一致性。智能控制器可对所有输入数据进行处理和准确的估计,即使所输入数据不常见,也能够快速进行评估。由于受控对象具有较强的变更性,因而造成不同的控制对象在控制器方面所具有的控制效果也各不相同。对于多样化的控制对象,即使应用智能技术也很难全面进行控制,虽然智能技术在控制某些对象时无需采取行动即可获取较好的控制效果,但这就全体控制对象而言仍然具有较高的'难度。因此,具体工作过程中仍需要进一步对智能控制器的缺陷进行研究,特别是针对各种控制对象时应结合具体情况进行分析,以求突破。
2、电气工程自动化控制中智能技术的具体应用分析
2.1神经网络控制技术的应用
由于神经网络技术反向转波算法较梯形控制法而言具有更高的性能,不仅大幅缩短了定位时间,还实现了对非初始速度、负载转矩变化的有效控制。对于神经网络而言,其结构具有多层次性,可进行反向学习算法,在神经网络的子系统中,其中一个可根据机电系统参数对转子速度进行判断和控制,另一个子系统则可以根据电气动态参数对定子电流进行判断和控制。智能神经网络已经在模式识别及信号处理方面得到了广泛应用,由于其具有非线性一致函数估计器,因此在电气传动自动化控制方面得到了有效的运用,正如上文所提到的那样,智能神经网络一致性强,因此,不需要被控对象的数学模型,且对噪音具有较高的抵抗力。
2.2模糊逻辑控制技术的应用
在电气工程自动化控制系统中通常具有很多模糊控制器,来替代PID控制器,并执行其他任务。模糊控制器多用于数字动态传动系统中。模糊逻辑控制包括两种,M型和S型,目前只有M型模糊控制器用于控制调速,M、S型控制器都含有规则库,即ifthem模糊规则集。其中,S型规则ifX为G,且Y为H,此时,W=(fX,Y),G、H均为模糊集。M型主要包括知识库、模糊化、反模糊化、推理机等,其中,模糊化用以完成变量的测量与模糊化,其隶属函数存在多种形式;推理机作为控制器
2.3PLC技术的应用
作为一个辅助系统,PLC正逐步取代电力企业生产中的各种继电控制器,为了满足逐步提高的电力要求,PLC在协调电力生产方面存在强大的优势,可以对某工艺流程进行有效控制。例如,在电力企业中,储煤、上煤、配煤及辅助系统共同构成了企业输煤系统,作为输煤控制系统,集控室主站层主要包括PLC和人机接口,集控室系统虽为自动化控制,但仍需辅助手动控制,远程I/O站及现场传感器可完成远距离监控,推动了企业生产效率的不断提高。PLC软继电器替代了传统供电系统中实物元件的应用,不仅实现了供电系统切换的自动化,还有效提升了系统的安全性及稳定性。
2.4故障诊断及优化设计技术的应用
在电气工程中,电气设备的设计是一项极为复杂的工作,需运用电路、电机、电磁场等多门专业知识及实际经验,传统设计采用的是实验及经验手工法,因此,所制定的方案很难实现最优化。随着智能技术的发展,产品设计已由传统的手工法转变为CAD设计,结合智能技术的应用,不仅大幅度缩短了开发周期,还提高了产品的设计质量及效率。为了对电气设计进行进一步优化,应广泛应用专家系统,加强专家系统的研发力度。此外,智能技术遗传算法由于算法先进、计算精度较高,也在电气工程中得到了广泛应用,例如,电气工程故障及征兆间具有不确定性及非线性等特点,因而关系往往错综繁杂,采用智能技术正好充分发挥了其优势。
3、结语
综上所述,电气工程自动化控制中智能技术的应用,不仅极大地提升了电气设备的自动化控制能力,还为电气工程整体的安全、稳定、可靠运行打下了坚实的基础。
摘要:伴随着社会的迅速发展,人们越来越注重电气自动化的运用,电气自动化已� 在电力行业发展过程中,电气自动化的重要性正在不断突显出来,同时电气自动化水平也得到了极大地提升,这明显将在很大程度上推进电力行业的发展,对电力行业相关系统的运转具有着重大的意义。文章将详尽阐述电气自动化的具体运用情况,并结合实际状况来探析电气自动化的发展趋势。
关键词:电气自动化;运用;发展趋势
1电气自动化的具体运用
1.1电气自动化在电力行业的运用
在电力行业运用电气自动化技术过后,电力系统的整体工作效率得到较大的提升,劳动人员的工作强度有所下降,同时还能够监控好电力生产与传输过程,这样有助于避免电力事故的出现,工作人员能够快速找寻出电力系统中的问题,从而及时采取措施来加以处理,以此来确保供电更加稳定、可靠。通过调查不难发现火力发电的能源在我国电力能源中占据着较高的成分,在火力发电厂的运行过程中,当设备结果以及材料有所不同时,热能回收也会存在着较大的区别,这样可能会导致热能的回收率无法达到需求。研究表明,重热系数在4%~8%范围内算比较正常,重热系数越大,热能回收则越好。[2]
1.2在建筑行业中的运用
伴随着社会主义市场经济的迅速发展,建筑行业也取得了重大的进展,电气自动化也已经运用于建筑构造过程中,从而创建出智能化建筑。现如今,数字电子化科技发展智能化已� 由于建筑行业想要减少人力资源的运用,并确保设备能够具有更大的效率,建筑设备的自动化控制系统应运而生。
2电气自动化的应用发展趋势
2.1现阶段电力系统自动化控制技术的重要方向
现阶段,在控制手段上,当前电力系统自动化管控系统正在不断向最优化、智能化、区域化与适应化方面进行转变,在该过程中,非常有必要灵活运用计算机技术与微型电子技术,这样将能够促使电力系统实现多样化发展,同时对信息技术与微电子技术处理的要求也变得愈加严格。此外,在电力系统的发展过程中,其能够根据最新的科学技术成果与理论依据来创设出多样化的发展模式。该模式对于电力系统而言有着诸多优势,不仅可以改进和优化控制方式,而且操作手段明显更加多变。
2.2核心竞争力方向
电气自动化是企业核心竞争力的重要组成部分。[3]在往后的发展过程中,伴随着我国经济的飞速发展,当前电力企业要想能够又快又好地发展下去,那么就应该不断扩大电气自动化设计与研发方面的投入,这样必然能够促使技术水平有所提升,当技术取得一定进展后,我国电力企业在电气自动化上与发达国家间的差距就会缩小,电气自动化的创新发展也将得以完成,企业的核心竞争力自然而然会增强许多,同时还能够在一定程度上推进我国国民经济的发展,故应该给予重视。从当前情况来看,电力系统的发展主要呈现出两种走向,分别是分布式与开放化,分布式结构可确保电力自动化系统中能构建出比较独立的功能性模块系统,这样系统在运行过程中的故障率必然会下降,系统在稳定性上的表现明显会变得更好。
2.3以电气自动化来带动电气智能化的发展
最近几年以来,我国在专用集成电路、CIMS、自动控制机器人产品等方面均取得不错的成果,各相关公司均针对电气自动化提出了各种设计方式与理念,从而引导电气自动化不断朝着智能化的方向进行转变。比如基于微机环境的集成化CAPP]应用框架与开发平台开发了综合智能化CAPP]开发平台与应用框架。[4]该平台同时也制作出了金叶CAPP、同方CAPP。故在未来的发展过程中,电气自动化的发展趋势将会变得愈加明显,通过不断改进和优化技术,从而实现电气智能化的发展目标。
结束语
现如今,在我国电力行业当中,电气自动化已� 在电力系统的构建过程中,电气自动化技术往往能够展现出其良好的功用,其不仅能够促使系统运行变得愈加精准、高效,而且有助于电力系统的维护管理,故应该注重电气自动化的创新发展,并将其合理运用于电力系统中,促使电力行业实现电气自动化发展的目标,最�
参考文献:
[1]王巧立。浅谈电气自动化的应用现状及未来发展趋势[J]。黑龙江科技信息。2014(05):21-27.
[2]张娉。试论电气自动化监控系统存在的问题及发展趋势[J]。电子制作。2015(07):136-139.
[3]翟少峰。电气自动化在现代化煤矿中的应用探讨[J]。能源与节能。2016(11):57-58.
[4]郑智。电气自动化的应用及发展趋势研究[J]。黑龙江科技信息。2013(08):224-226.
摘要:PLC技术在电气工程自动化控制中的应用以微软公司处理器为基础,利用现代化通讯技术、计算机技术及自动控制技术为支撑,通过多种技术的有机结合,扩大自动化控制系统在电气工程方面的应用。现阶段,我国的房地产行业比较迅猛,其对电气工程的需求也比较大,基于此,本文立足于我国房地产电气工程的实际现状,具体讨论PLC技术在房地产电气工程中的应用。
关键词:PLC技术;电气工;程自动化
现阶段,我国经济发展比较迅猛,人们生活水平在不断提升,不再单单为追求温饱问题,更多的是追求生活质量,在这种情况下,就促进了房地产行业的发展。众所周知,房地产开发中电气设备运用比较多,例如,电梯、变电柜等设备,都需要运用电气工程的相关知识,进行构建。随着嵌入式系统的快速发展,当前的电气设备愈加智能化有,尤其是PLC技术的发展,使得电气编程变得更为简单。也使得PLC技术应用更加广泛。基于此,本文重点探讨PLC技术在电气工程中的运用,由此提升房地产开发的品质。
一、PLC控制系统的设计原则
(一)当前人类社会已经进入大数据时代,在我们生活的周围充满着各种数据,这尽管给我们带来了便利,但是也存在着相应风险。对于房地产开发过程中的电气工程而言,其安全性和可靠性非常重要。例如,在电梯运行的过程中,如果因为PLC控制系统出现了问题,其对人们的生命安全会产生重大作用。基于此,对于房地产开发过程中的电气工程施工而言,必须最大程度上保障PLC控制系统的安全性与可靠性。
(二)确保电气工程中的PLC控制系统具有相应的伸缩性。也就是说,必须预留接口,一旦客户的需求发生变化,则系统能够增加相应的'功能。之所以这样做,其目的就在于降低系统二次开发的相关费用。
二、PLC控制系统的核心技术
(一)就PLC控制系统而言,其 通过前面的论述可知,它重点包括四部分内容。在实际操作过程中,编程人员按照房地产开发过程中电气工程的实际要求,进行针对性开发。众所周知,不同的建筑对电气工程的要求也存在着差异性。PLC技术允许人们进行个性化和定制化开发,在这种情况下,控制系统开发更加实用性。
(二)日常生活中,如果出现了设备断电,控制系统就会停止运转。例如,人们在乘坐电梯的过程中,会使用电力,这就会产生一定的费用,如果能够对电源进行优化控制,则会显著降低运营成本。因此,电源的重要性不言而喻。对于PLC控制技术而言,通过对其进行编程优化,能够降低电源的实际损耗。在实际操作过程中,编程人员通过PLC技术进行电源优化,则会显著降低电源的功耗,进而提升其利用率。
(三)相比较传统控制技术。PLC控制技术更具智能化,也即其控制系统运用更加灵活,能够按照人们的使用习惯进行按照和操作。例如,PLC控制系统允许人们利用使用率的测算,自动进行策略调整,由此降低损耗,提升使用效率。
(四)在实际使用过程中,PLC控制系统提供了非常多的接口,这就使得其运用范围更加广泛,而且其提供的接口都为标准接口,能够运行在不同的操作系统中。换言之,其在一个平台上开发的系统,可以不进行二次修改,而直接运用到其他平台上,方便了人们的操作。这对于房地产电气工程而言非常重要,因为房地产建筑使用的设备型号、规格都存在着差异性,因此需要开发出的程序能够运用到不同的平台上。
三、PLC技术在电气工程及其自动化控制中的运用
(一)在顺序控制方面的运用PLC技术的应用非常广泛。在这里重点讨论其房地产开发领域的应用。PLC控制系统可以作为顺序控制器来加以应用。在人们居住的小区中通常会用到锅炉,来进行取暖等操作。而这些操作都可以通过PLC控制系统来实现。在实际运行过程中,利用PLC技术,可以实现远程控制、现场传感、主站层数据传输等操作。换言之,人们无需进行现场操作,直接通过智能终端设备,实现系统的远程控制。其中,PLC控制系统将主站层中的所有设备进行连接,实现数据的共享,并最终将计算结果通过远程技术,传递给相应的操作人员,进而进行判断和操作。例如,在邢台某房地产开发公司的小区中。
(二)在开关量控制方面的运用在房地产开发过程中,对于电气工程的施工,可以通过PLC技术来加以实施,其中,能够对开关量进行控制,这主要是通过PLC控制系统的可编程存储器来实现,也即是说,将其变成虚拟继电器,最终实现开关的控制。需要说明的是,在实际中利用PLC技术对继电器进行通断控制过程中,会出现等待时间比较长的情况,为解决该问题,就需要利用自动切换系统来实施。通过该技术,结合PLC控制技术,能够有效降低等待的时间,提升系统的运行效率。
四、PLC技术在电气工程及其自动化控制中的运用策略
在房地产开发过程中,电气工程的重要性不言而喻,其应用的范围也比较广,不单单是在控制柜,抑或是电梯系统方面,还广泛运用在小区监控、门禁等系统中。因此,如果想要提升PLC控制系统的运行效率,必须基于一定的原则来实施。
(一)深入展开PLC技术在电气工程自动化控制PLC技术发展比较迅猛,尤其是嵌入式系统的发展,更是促进了PLC技术的发展。在房地产开发过程中,智能化设备运用更加多,在这种情况下,就需要操作人员在进行PLC控制系统编程过程中,要注重系统的智能化,便捷人们的操作,也就是说,要通过不断的优化,使得PLC控制系统在电气工程的应用更具安全性和可靠性。
(二)积极开展专业技术培训工作PLC技术经过多年发展,其应用范围愈加广泛,在这种情况下,就促进了技术的不断更新。对于部分施工人员而言,需要不断的进行知识更新,才能完全掌握新技术的动态。因此,PLC控制技术的操作人员,要通过不断的学习,掌握国内外最新的PLC控制系统动态,运用到房地产开发过程中的电气工程中,使得技术能够保持领先地位。
(三)加快建立健全PLC技术的运用规范和标准在对电气工程施工过程中,就PLC控制技术的应用不,不能随意进行设置,必须基于一定的规范来实施。否则,在后期的维护抑或是系统功能变更的过程中,会造成很大的困难,同时,也会增加开发的成本。对于房地产建筑而言,其施工情况比较复杂,如果PLC控制系统没有按照规范进行操作,在后期进行维护的过程中,其操作起来比较困难,会造成一定的安全隐患。因此,操作人员在施工时,必须具有操作规范的意识。
结语:
通过上面的分析可知,随着我国房地产行业的快速发展,PLC控制技术在电气工程的运用愈加广泛。但在实际操作过程中,还存在着各种问题,例如,施工人员不能按照PLC技术的要求进行规范操作,最终造成施工的困难,同时,还为后期的维护带来的隐患。因此,在实际操作过程中,要通过技术人员的培训,不断提升其知识技能,培养其规范操作的意识,使得PLC控制技术在电气工程的施工中更具安全性和可靠性。再就是,嵌入式系统发展比较迅猛,更多智能化的设备进入到人们的生活中,因此,对于PLC技术在电气工程中的应用,要有机结合这些智能化设备,为人们生活质量的提升提供更加有利的条件。
参考文献:
[1]李峰。电气工程及其自动化存在的问题及解决措施[J].城市建设理论研究(电子版).2017(08):89-89.
[2]刘存武。电气工程及其自动化在电气工程中的应用[J].化工管理。2017(18):67-67.
[3]李瑞国,吴琼,许洋洋。电气自动化在电气工程中有效运用技术分析[J].通讯世界。2017(12):345-345.
摘要:
在煤矿资源作为我国发展的重要支柱能源的背景下,对煤矿产业进行高效、安全的现代化生产已经是必须之举。煤矿电气自动化控制系统的引入,实现了提高煤炭利用率,促进循环经济发展的目的。该文主要进行煤矿电气自动化控制系统创新设计的研究,从而对煤矿企业提出更完善、有利的生产控制方式。
关键词:
煤矿;现代化;电气自动化;控制
高效作为一种传统的、不可再生资源,煤矿的利用应该已经得到更加严格的管控,相较于传统的煤矿生产过程,现代化生产更加注重安全和高效,而这种追求高效率和高安全性的生产,一定依托有大量的数字量和模拟量的控制装置[1],比如对于瓦斯含量进行计量、对通风状况进行监测、对矿井的水泵进行开合控制等工作内容。因此,在提高煤炭利用率、进行循环经济发展方面,政府管控下的煤矿企业通过多种渠道进行了电气自动化控制技术的引入。电气自动化控制系统,是在计算机技术不断发展的前提下,基于PLC技术[2]而创的数字化和自动化式的控制系统。PLC技术成为解决效率、安全问题,实现煤矿电气自动化控制的有效、便捷手段。煤矿电气自动化的控制系统,可以在恶劣的工作环境下正常工作,使煤矿开采流程简化的同时保证计算机对数字和程序的控制,实现煤矿高效率同时高安全性的生产。对于煤矿电气自动化控制系统进行创新设计,旨在以更低的构建成本,来提高控制系统的运行可靠性和安全性,增强使用性能,进一步促进煤矿的生产、运输和存放等过程中的高智能化、自动化以及现代化。
1、煤矿电气自动化控制系统
煤炭作为传统能源,在我国有着很多的应用,是我国重要的资源,无论对日常生活或是工业生产都有着不能缺少的重要作用。电气自动化技术的应用,从本质来说,就是将资源的利用率最大化,即实现最高性价比。电气自动化控制系统中的主要组成部分是单片机[3],其组成的主要部分包括电源、断电设备、防水设备、通风机等。在系统组成中,选择单片机时需要与工作环境适应,且操作时应该非常谨慎,切实避免漏水等事故发生。单片机的主要工作原理是通过CPU信号的变化进行控制,在煤矿的工作条件下,安装单片机可以做到保护作用。具体来说,单片机会对电流变化进行感应,通过程序实现电流—电压信号的转换,同时进行信号的转换。数据进行转换式采集后,通过电脑显示,通过控制设备配置的基本参数,可以对采集的数据进行完整保存。单片机对于煤矿开采过程中实行的保护作用,主要是断电保护和通风。
2、煤矿电气自动化控制系统现状
无论是国际或者国内,煤矿业的自动化发展必然将成为未来发展的道路。无论在煤矿的建设还是发展中,自动化系统可以实现监控、诊断、维护等诸多内容,实现整体生产过程的自动化,是对工作效率的提高。目前,根据我国《煤矿自动化规划》要求,我国建设的新建矿井均为综合自动化网络平台主导生产管理。正在生产的主力矿井,均为自动化基础好的矿井,从设备集中控制向系统集中控制转变,对一些老矿井进行自动化改造,按照节能降耗的原则,进行逐步的改造。目前,自动化控制技术被广泛应用在多个行业,其中煤矿、火电、核电、化工、石油等行业对自动化的应用已经较为成熟,并处在不断发展之中,结合现状,煤矿电气自动化控制系统创新后,未来的发展方向,则是将技术与成熟的产品、多年实际运行过程中的经验进行整合,对自动化控制提供更为完整、整体性的方案。
3、煤矿电气自动化控制系统创新设计研究
3.1创新设备系统煤矿的开采,现代化式应用自动控制系统,提高工作效率即意味着提高企业的竞争力。为了电气自动化控制利用更加高效,选用PIC设备之前,必须进行整体性系统状态和功能的评估。若只对煤矿开采中的瓦斯浓度进行监测,可以选择微型设备。但是矿井中,水位高低直接影响着水泵的工作状态,所以对PIC的选择上就必须选择大型设备。在优化设备系统上,使设计要求水平更高并对矿井实施全方位实时监控,是未来的主要发展方向。实现这一内容,可以全方位对矿井下的情况并数据进行掌控。另一方面,在编程程序上,当前主要有三种,分别为手控编程、PIC编程和计算机编程。三者并没有绝对优劣,手动编程适合数据较少时使用,PIC编程适合大规模的采矿需求,但是范围有限制。计算机编程和PIC编程的结合,能提高效率但是耗资大,以上多种编程组合方式中,在煤矿电气自动化控制系统的创新时,应根据当时情况的需求,因地制宜,因时制宜,完成编程方式的选择。
3.2创新系统软件系统软件的优劣对于煤矿开采工作的顺利进行也至关重要,对系统软件进行创新,意味着对于不同变化条件可以进行更加细致的满足,即提高开采效率和开采质量。对这一目标的实现,需要通过进行系统内部软件的处理,处理得当则是完成这一目标的关键步骤之一。对系统内部软件的处理,应用直观的图表来展现组合装配,不仅是PIC系统应用过程中的关键步骤,同时也是技术上的难点。系统创新或优化的工作,应该从自身的规模进行,在了解煤矿开采工作实际需求的前提下,进行工作设计,选择软件的参数,并且进行合理搭配,使优化/创新之后的系统可以与煤矿的实际运行情况相匹配,然后在实际操作过程中,完成对工效和质量的提升。
3.3创新系统硬件系统硬件和系统软件可以互为参照,缺一不可,都是在电气自动化控制系统中属于重要部分。简单来说,系统硬件主要会涉及到输入及输出的设备。相应的,对系统硬件的优化也包括两个部分,对输入设备的优化和对输出设备的优化创新。其中,对输入设备的创新以PIC设备供电电压为基础,一般电压在85~240V之间,考虑到煤矿的实际工作环境往往比较恶劣,所以需要对安装电源进行净化,过程需要特定的方法考量。电路的创新,通常选择滤波器和变压器,两者进行结合就可以对电压进行较好的控制。输出设备的创新,则需要对指示标准和调试的装置进行选择,一般可以采用晶体管的输出方式,此种方法可以保证反应速度,同时对电流频率有益。
4、结语
煤炭资源在我国的发展过程中意义重大,并将持续作为重要资源为我国使用,不论是日常生活中,或者工业发展中,在这种背景下,对煤矿开采工作进行完善就十分有意义。对煤矿电气自动化控制系统进行创新研究,是对该自动控制系统性能进行提高的有益途径,只有创新系统的内部元件,并更新各部分的工作原理,才可以更好地发挥其控制作用,对煤矿开采效率的提高和功能的完善都有很大帮助。煤矿产业对PIC电气自动化控制系统的应用,可以加速煤矿企业的自身发展,同时也可以使整个系统的运算和编程效率得到提升。如该文中讨论的结果,创新设计重点可以在创新系统内部构建,保证输入电路和输出电路的稳定,且创新系统软件和硬件,以电路的自身条件和运行的环境来结合确保电压的稳定和在正常值范围。在这种保障和发展条件下,煤矿产业将继续作为我国的重要资源支柱,良性、可持续地得到发展。
参考文献
[1]张礼崇,郜祥,王焱,等。电气自动化工程控制系统的现状及其发展趋势[J].技术与市场,2012(1):127-128.
[2]刘琴。单片机在煤矿电气自动化控制技术中的应用研究[J].中小企业管理与科技,2013(34):159-160.
[3]马珍。煤矿电气自动化控制系统创新设计[J].中小企业管理与科技,2014(25):215-216
摘要:随着科学与经济的飞速发展,电气工程及自动化技术已发展深入多个领域,在建筑业中发挥着不可或缺的作用。电气工程及自动化技术结合工程技术基础知识与相关的电气工程专业知识,应用计算机信息技术控制,对建筑体系综合运用具有创新性意义。电气工程及自动化技术作为建筑工程电力系统高效拓展的基础,不仅可以提升程序电气设备的工作效率,还可减小操作步骤的能源消耗。本研究主要对电气工程及自动化在建筑中的应用提出探讨。
关键词:建筑;电气工程;自动化技术
电气工程及自动化技术的水平提高,是确保建筑工程高质量运行的宏观调控,在电力系统与电气工程中执行复杂且庞大的工程作业,及时纠正设备中出现的问题。不断深入发展和充分利用电气工程及自动化技术,可以很大程度上节约建筑业的用电成本,高速高效完成作业量,同时结合计算机网络技术,提升运行的安全性及稳定性。
1自动化技术在电力系统中的运用
1.1自动化技术在分散测控系统中的运用。常规分散测控系统其功能向开放性的集成结构转变,采用这种开放性管理体系,可以使生产设备具有更大的资源连接空间,进而形成最佳的集成控制兼容。目前随着电子科技的迅速发展,分散控制系统结合智能数字化设备使得整体过程控制实现功能性转变,达成双向工业通信分散下移,给操作程序控制带来真正意义上的优化,促进系统高效率运转。自动化技术应用于分散控制系统,可以实现最有效、最直接的数据运输过程,提升信息集成软件,具有高度精确性以及可控性。在线产阶段信息集成中,其管理系统操作从初始的底层施工人员实时监控和程序调整发展为最高层次的战略决策经营管理,生产调度与仪表通信形成高度一体化的全新管控系统。在完成现场作业的模块化结构设计过程中,工程数据的信息采集转导、开发转变、录入执行等结构形式均利用相同的现场控制单元进行操作。自动化技术实际上为分散测控系统根据不同形式的基础模板配置组成信息交互扩展单元,就本质而言,其使得模块化的系统硬件配置与现场结构单元的存储设备基线一致,实现高效的编程功能,并满足控制系统的各种应用模块进行数据共享。
1.2自动化技术在电网调度系统中的运用。电网调度系统根据用电客户的不同可以分为相应的普通居民生活用电调度系统以及商业生产企业用电调度系统,其主要功能是对系统整体用电进行实时调控,采用科学合理的监管手段,实现电网体系正常运转。自动化技术应用于电网调度系统,对控制解码程序安装显示终端,可借助电子计算机设备将所处状态下的电力系统管理范围根据时空远近列出,采用低消耗成本实现对整个电力系统的调配管理。在保证电网调度系统中电力调度与电力供应安全运行水平的基础上,自动化技术对主电流变压器以及互感控制面板进行实时监控,变电高压设备建立二次设备运行外延管理,对于电网调度系统中出现的程序失调情况采取有效预防手段。自动化技术结合电网终端软件,根据智能化设备感应二次变压,主控输电、变电以及配电程序的工业生产调度,并实时控制电负荷比,实现电网系统电力调度发电频率与预测用电负荷能量保持在相对稳定的水平阶段。自动化技术运行电网调度系统的调度原则,对调频容量以及系统潮流进行稳定计算,并且安排监视运营装置的启停和备用。
1.3发电厂及变电站自动化技术的相关分析。发电厂通过能源转换以及电机制造技术,将相应机械能量转换为电能,并由电力系统进行升压从而转入电网。在我国目前的电力系统中,在发电能效起主导作用的仍为火力发电、水力发电以及核能发电等。自动化技术应用于发电系统,主要在轨道电站形成规模投入运营,以完成整机吊装作为容量统计依据,实现能量的高效转换。在火力发电的分析中,自动化技术监管并调控煤粉与空气的混合与氧化燃烧,其在电厂锅炉炉膛设备的规模空间内悬浮,利用可燃物内部化学能燃烧产生的热能,通过高压水介质进一步转为水蒸气热能,有效进入工程汽轮机后以辐射对流转化为旋转机械能,负荷电流以及短路电流,保证最后通过高速旋转的汽轮机转子带动联轴器进而拖动发电机释放出电能送入电网系统,这一过程中自动化技术发挥重要作用。变电站在接受电力系统传送的电能时,为了使电能高效率地传达至远距离电力用户,需要对所接受电能进行相应的升降压适度调整。自动化技术根据变电设备规模大小,利用电力变压器将系统各级电压的电网相互连接,改变电压的场所,确定电力流向,并减小电力输送中的容量损耗。自动化技术调节切换变压器的相应分接头,控制受端变电并断开电力传送系统的正常运行。
2自动化在建筑电气工程中的运用
2.1建筑设备自动化运行系统。建筑设备根据内部结构特点,采用流体运动的参数、分类和模型,建立一元流体恒定总流能量体系,通过对流动阻力和流动状态的分析,构造出高效稳定的建筑调控监测系统。建筑设备为满足基础用户对设备体系的要求,自动化系统依据传热原理知识,控制建筑工程的热传导,进行热对流和对流换热的监控,管理热辐射及辐射换热的程序化操作,实现建筑内部的冷热源设备安全运转。同时建筑设备的。自动化系统对采集数据进行精确处理,控制电流、电压、电阻与电功率处于正常范围内,其调节相应的电磁效应与电磁感应,直流电路与交流电路相互作用,并通过变压器进行建筑用电负荷等级、类别以及电压的选择。自动化系统根据建筑电气的基本组成和特点,利用电子计算机经营管理与控制,实现建筑设备工程的管道综合与局部系统分类。
2.2楼宇自动化。楼宇自动化的发展规模及速度日渐剧增,已从初始的追求建筑结构体系完整化发展成为智能建筑高技术化。自动化系统对楼宇电气设备实施统一且高效管理,完善综合布线系统以及优越网络结构环境,对于即将规模化的智能社区建设进行楼宇自控操作。随着智能建筑的延伸,社区宏观调控系统中的供暖设备、空调设备、供水设备以及通风设备有序高效运行。[2]自动化系统作为智能建筑的应用之一,其自控技术是内部核心结构提高建筑本质水平的关键。楼宇自动化通过采用计算机集散中心控制相结合的管理体系,综合性提高建筑系统的整体设备利用率,同时加强对工程设备状态运转水平的监测,实现能源的科学合理利用,并促进建筑设备的智能化发展。
2.3变配电系统自动化。变配电系统是电力工程建设中的核心系统之一,其作为变电系统与配电系统的有效结合体,执行二者所具有的综合性作用。变电系统的核心是变压器,主要通过对远距离传输电路的电压进行适度调整,符合电力用户的使用标准范围,阻断相应电压级别负载的使用。而配电系统的核心而是各种电流级别的接口开关,将电网系统所传输的电能根据具体情况分配到电力用户的基线入点。自动化系统的应用实现变配电系统的高效运转,促进建筑电气工程发展。
建筑业趋向科技化与安全化发展,应建立科学的电气工程及自动化技术体系,改造电气工程以及电力系统设备,推动程序操作信息化外延。电气工程的自动化发展方向,是目前电力用户对电气工程体系的要求日渐剧增的必然结果,建筑内部不断推进工程设计的质量与效果,这将直接影响建筑体系的功能性以及结构安全性。建筑业中对电气工程及自动化技术的充分利用,可以在很大程度上促进建筑业的飞速发展,提高建筑物的综合性能以及功效。
参考文献
[1]陈文宝。浅谈建筑中的电气工程及其自动化技术[J].建筑工程技术与设计,20xx,8(1):214-215.
[2]吕畅。浅析建筑中的电气工程及其自动化技术[J].工程技术,20xx,12(1):284.
摘要:
最近几年来,电气自动化应用逐渐深入人们日常的工作与生活之中,使人们的生活方式发生了巨大的变化,电气自动化就是电气信息及其自动化工程,常见的家用电器都与电气自动化息息相关,电气自动化目前在社会中各种行业中均有应用,可见电气自动化对人们的重大影响力。
1 前言
随着市场经济的飞速发展,我国各类传统行业现代化技术含量水平迅猛提升,归因于工业产业电气自动化技术的科学应用与现代化控制水平的增长。同时,由于引入了计算机、网络、自动化高新控制技术,全面引进了科技人才,令各类现代工业企业电气自动化生产管理效能显著提升,产品科技含量有效增长,并呈现了自动化、现代化、电气化的全面发展模式。为进一步探析电气自动化系统优势、良好监控功能,本文展开了ECS体系相关技术探析,展望了其科学发展方向,对扩充电气自动化监控体系应用服务范畴,激发综合优势效能,有积极有效的促进作用。
2 电气自动化ECS监控体系综合功能
电气自动化综合监控体系ECS主体将分布式控制体系之中涉及的电气内容分离而出,实施专业化的管控,进而有效实现了工业生产建设运行阶段中对电气系统的有效测控、科学保护与综合分析。ESC监控体系体现的优势功能在于实现了出口断路器、相关隔离控制的有效操作、科学保护,控制方式的良好转换,提升了电气自动化控制水平,实现了实时的有效监控管理。可科学控制体系之中相关自动程序,同时依据运行服务现实状况及机械设备的综合效能,可进行人工间断点布设,并分布开展。基于前端智能与现场总线科学技术的快速发展与推广应用,令基于网络平台的电气体系得到了全面发展。ECS体系不仅同DCS体系进行信息数据的有效交换,同时,还基于模块接口进行后台电气监控的良好对接,科学利用网络技术平台共享信息特征优势,令数据挖掘逐步深入,并有效提升了电气自动化体系维护管理的综合实践水平。
3 自动化电气控制实践模式
3.1 集中性的电气自动化监控
电气自动化体系的集中监控具有显著的便利维护操作特征,无需提出较高的防护标准,因而对体系的实践设计相对简单易行。然而,由于主体集中控制特征令体系内各项功能汇集在同一处理器之中运行,势必增加了处理器的压力,令其处理大量工作任务,进而影响了实践运行速率。基于整体电气设备系统受到综合监控,令监控管理对象庞大,进而引发了降低主机冗余现象。加之电缆总量的提升、成本费用投入比例的增加,电缆长距离的运行形成的干扰作用,进一步会对整体系统安全效能造成负面影响。再者,引入硬接线系统模式,基于节点错位现象,令设备出现故障。该类接线如何进行重复连接则会加大操作难度,不便于进行查线,令系统维护工作任务总量显著加大,同时还会出现复杂接线引发误操作不良现象。
3.2 现场总线实践监控模式
现场总线技术引入电气自动化监控体系,有效令接线工作任务量大大下降,节约了实践操作成本与安装经费,同时降低了材料用量,令系统呈现出了灵活优越的组态,提升了综合可靠安全性。另外,该监控模式简化了隔离设备、令相关I/O应用卡件、变送设备与端子柜的配置量显著降低,基于通信线接入监控体系,令控制电缆用量大大降低,进一步简化了运维操作任务及较多费用投资,科学控制了成本投入。再者,体系之中配设装置发挥了独立能效,他们仅借助网络实现对接,有效提升了系统安全效能。自由的网络组态令体系之中的任何一类装置即便再出现问题或故障时,也仅仅会对对应原件造成负面作用,杜绝了整体系统瘫痪的不良状况。基于现场总线的实践监控自动化模式,还会令设计控制方案有效提升科学专业性,针对间隔不同,可发挥相应能效,进而便于依据间隔状态实施针对性规划设计。由此可见,现场总线技术、监控模式的良好引� 当前,现场总线模式、以太网技术已广泛引入电气自动化体系之中,促进了电气自动化、智能设备的全面发展、广泛应用,为我国各类工业建设、生产发展事业创设显著经济效益与社会效益提供了完善保障。
3.3 远程监控综合运行模式
基于现场总线监控模式技术其具备的通讯速率相对有限,较多工业建设生产管理运行则需要完成大量的通讯任务。例如机场集团服务管理行业等,其材料的应用耗费量相对较大,因此应适宜选择良好的系统规模,可科学引入远程控制方式,有效解决通讯速率问题,实现实时监控、高效系统管理运行目标。
4 DCS分布式系统科学运行控制及电气自动化监控体系的良好发展
伴随现代化计算机技术、控制体系的多元化发展、广泛应用,令传统电气控制模式无法适应高新技术发展步伐,体现出了不协调的矛盾问题,并令控制管理实践水平的持续提升面临着较大压力。为有效解决这一不良矛盾问题,应科学将分布式DCS控制系统引入电气实践工作中,进而可有效借助成熟应用发展的分散DCS体系控制技术优势,全面提升自动化电气系统管控水平。实践应用中,可将电气自动化控制体系电源系统、同期系统、切换体系、故障维护实现硬接口处理后,基于DCS科学控制方式,实现预防电气误操作目标,令管理控制更为完善、便利,促进监控报警、数据信息反映有效融合于电气自动控制设备之中,进而令电气系统自动化控制更加高效、安全。电气控制管理实践中,DCS体系基于处理设备信号,屏蔽相关传输干扰,合理应用控制手段确保综合管控目标的实现。为保障电气自动化系统的便利管控、健康规范运行,科学高效维护,应适应生产运行现场复杂恶劣的条件,优化选择设备种类、形式,可合理选择通过实践检验、多次证明的安全稳定设施机械,进而有效保障电气自动化体系的稳定高效服务运转。
基于工业标准OPC的科学实施,可编程逻辑控制科学要求标准的创设引入、微软网络技术平台的扩充应用,促进了计算机科学技术与电气自动化控制监督技术的全面融合,体现了计算机现代化应用技术的综合优势特征,并逐步推进了逻辑控制标准的国际化发展应用,推进了电气自动化系统的革新发展与广泛提升。基于市场综合需求,进一步推进了计算机平台系统与电气自动化控制的完善结合,加之电子商务的全面发展,拓宽了电气自动化监控领域各类数字化、多媒体手段、网络平台科学技术的应用范畴,令其发展前景一片大好。各类生产管理企业、部门,则可借助自动化监控手段、网络平台快速汇总、调取所需的人才信息、会计数据,并可就生产实践过程实时动态图像开展有效的自动化监控,进而及时全面的了解动态生产操作信息,准确获取相关电气数据。另外,电气自动化控制系统中还可科学引入处理视频手段、现实虚拟控制技术,创设优质自动化项目产品。例如基于人机交互的科学高效控制以及维护设备体系相关产品的应用、软件结构体系的持续优化,将有效提升系统综合传输交流与通讯水平,令其便利应用性进一步强化,并令组态环境更加统一有序。彰显了各类价值化软件应用的现实重要性,并令电气自动化监控管理体系逐步由单一、分散模式合理发展为科学优质的集成管控体系。
5 结语
总之,基于电气自动化控制模式特征、监控体系综合功能,我们只有科学引入自动化控制理念、分布式控制技术、计算机网络体系控制技术,才能全面发挥电气自动化监控体系综合管控效能,促进其与各类现代化管控技术的全面融合,进而实现未来应用服务领域的健康、持续与现代化发展。