在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。如何写一篇有思想、有文采的论文呢?下面是的小编为您带来的数学建模论文通用5篇,在大家参照的同时,也可以分享一下给您最好的朋友。
走美杯”是"走进美妙的数学花园"的简称。
"走进美妙的数学花园"中国青少年数学论坛是中国少年科学院创新素质教育的品牌活动。20xx年,由国际数学家大会组委会、中国数学会、中国教育学会、中国少年科学院成功举办了首届"走进美妙的数学花园"中国少年数学论坛,至今已连续举办七届,全国三十多个城市近三十万人参与了此项活动,在全国青少年中产生了巨大的影响。 "走进美妙的数学花园"中国青少年数学论坛活动是一项面对小学三年级至初中二年级学生的综合性数学活动。通过"趣味数学解题技能展示"、"数学建模小论文答辩"、"数学益智游戏"、"团体对抗赛"等一系列内容丰富的活动提高广大中小学生的数学建模意识和数学应用能力,培养他们一种正确的思想方法。 著名数学家陈省身先生两次为同学们亲笔题词"数学好玩"和"走进美妙的数学花园",大大鼓舞了广大青少年攀登数学高峰的热情和信心,使同学们自觉地成为学习的主人,实现从"学数学"到"用数学"过程的转变,从而进一步推动我国数学文化的传播与普及。
"走美"活动已连续举办七届,近30万青少年踊跃参与,已取得良好社会效果,并被写入全国少工委《少先队辅导员工作纲要(试行)》,向全国少年儿童推广。
“走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。
1、活动对象
全国各地小学三年级至初中二年级学生
2、总成绩计算
总成绩=笔试成绩x70%+数学小论文x30%
笔试获奖率:
一等奖5%,二等奖10%,三等奖15%。
3、笔试时间
每年3月上、中旬。
报名截止时间:每年12月底。
走美杯比赛流程
1、全国组委会下发通知,各地组委会开始组织工作
2、学生到当地组委会报名,填写《报名表》
3、各地组委会将报名学生名单全部汇总至全国组委会
4、全国"走进美妙的数学花园"趣味数学解题技能展示初赛(全国统一笔试)
5、学生撰写数学建模小论文
6、全国组委会公布初赛获奖名单并颁发获奖证书
7、获得初赛一、二、三等奖选手有资格报名参加暑期赴英国剑桥大学数学交流活动。
8、各地按照组委会要求提交数学建模小论文
9、前各地组委会上报参加全国总论坛学生名单
10、全国总论坛和表彰活动
概率论与数理统计是一门研究随机现象及其统计规律的数学学科,它是高等院校各专业开设的重要的基础数学课程之一。以下是“概率统计中融入数学建模思想的教学探索论文”,希望能够帮助的到您!
如何运用该课程的理论知识解决实际问题具有非常重要的研究意义。每年一次的全国大学生数学建模竞赛是目前各高校的规模较大的课外科技活动之一。数学建模是一门运用数学工具和计算机技术,通过建立数学模型来解决现实中各种实际问题的新学科。它通过调查,收集数据、资料,观察和研究其固有的内在规律,提出假设,经过抽象简化,建立反映实际问题的数学模型,即将现实问题转化为数学问题。纵观历年数学建模竞赛试题,像高等教育的学费问题、北京奥运会人流分布、DNA序列分类问题、DVD在线租赁问题及医院病床的合理安排等问题都不同程度地涉及到了概率论与数理统计的相关知识。笔者多年来一直为理工科的本科生讲授概率论与数理统计课程,并每年辅导和指导全国大学生数学建模竞赛,所以与同事们一直都在探索如何深化概率论与数理统计这门课程的教学改革,使其与数学建模思想能有机结合。本文将从以下几方面进行探讨研究。
一、概率统计教学中融入数学建模思想的重要性
传统的概率论与数理统计课程的教学,可以简单地归纳为:数学知识+例子说明+解题+考试。这种模式虽然使学生在一定程度上掌握了基础知识,提高了计算能力,也学会了运用所学知识解决课后作业和应付考试。但也不难看出,这种教学方式与实际严重脱节,学生学会了书本知识,但却不知在所学专业中该如何运用,这不仅与素质教育的宗旨相违背,也极大地削弱了学生学习这门课程的能动性,从而也影响了教学效果。数学建模的指导思想恰恰在于培养学生运用所学理论知识来解决现实实际问题。这不仅仅是这门课程对学生的教育问题,更是顺应当前素质教育和教学改革的需要问题。
二、在课堂教学中融入数学建模思想
对于讲授概率论与数理统计这门课程的教师来说,有着非常重要的任务,那就是如何教好这门课程,即如何使学生通过对这门课程的学习而增强其对概率统计方法的理解与实际应用能力。
1.教学内容上数学建模思想的渗透。众所周知,教师对教学内容的把握起着不容忽视的作用。有效的教学是依赖于教师对该课程的内容有着全面的和深刻的理解。概率统计中的一些概念、性质、模型的应用确实有些难度,在日常教学中可以通过精选例题、切近现实生活,使学生逐渐深化对相关知识的理解,即讲课的内容生活化、趣味化,生活中的概率统计问题模型化。在概率统计里这些趣味性的例子比比皆是!比如摸球、投掷骰子等常见的游戏,“父母的身高对子女的影响”、“男女生人数的均衡对一个班级学习效果的影响”等发生在身边的事。在概率统计这门课程中数学模型的影子也随处可见!比如像降雨概率、人体舒适度指数、超市银台处的等待服务时间等这样的随机现象问题都需要将实际问题数量化,然后对研究对象做出判断,从而解决问题。教学内容中也可插入一些反映社会经济生活的背景与热点问题,使课堂教育跟上时代步伐。如有奖促销问题、保险赔偿金确定问题、交通事故问题等,这样的内容都旨在培养学生利用数学工具分析解决实际问题的意识和能力,也就是培养学生的建模能力。
2.教学方法中融入数学建模思想。在教学中,教师的责任更大地体现在对学生的引导能力,通过引导使学生运用自己的能力来解决相关的问题。这样使学生不但能够学到严谨的理论知识,同时也提高了学生分析问题和解决问题的能力。在教学中,我们主要采用精讲与导学相结合的方法,同时在课堂教学的各个环节中也可恰当运用讨论式、启发式、归纳类比式等教学方法。在运用各种教学方法中都要充分关注学生的参与性,在与学生的互动中挖掘出课本内容中的数学建模思想,使其“显化”出来。比如在讲解随机事件和古典概型中,可以讲解摸球问题、生日巧合及配对问题、确诊率及血清化验问题等,这样既活跃了课堂氛围,又培养了学生爱思考的习惯。必须提及的是“案例教学法”,它是概率统计课程融入数学建模思想的有效而常用的教学方法之一。在教学中可以直接给出案例,然后从求解具体问题中找出相应的理论和方法。此方法缩短了数学理论与实际应用的距离,不仅可以提高学生学习的积极性,同时也使学生明白概率统计是建立在现实生活基础上的一门课程。比如在随机变量的数字特征中,可以给出“报童的收益问题”案例;在参数估计中,可以给出“湖中鱼的数量估计”案例;在大数定律和中心极限定理中,可以给出“保险公司的收益问题”案例;等等。由于受到课时限制,可能不能充分有效地对案例进行完整讲解,通常将“案例分析法”和“现代教育技术法”相结合进行教学,利用多媒体教学手段可以将案例中出现的大量统计计算均由统计软件(如Spss,SAS,R等)来实现。这样既易于被学生接受,也有助于学生掌握统计方法和实际操作能力。
三、发挥课后作业作为课堂教学的补充与延伸作用
作为数学课程,课后作业是十分重要的组成部分,是进一步理解、消化和巩固课堂教学内容的重要环节。
1.课后试验。在概率统计这门课程中有很多随机试验,并且很多统计规律也都是在随机试验中获得的。比如通过投掷均匀的硬币和均匀的六面体骰子,可以很好地理解频率与概率之间的关系;双色球的有(无)放回抽样,有助于理解随机事件的相互独立性;统计某书上的错别字,并判断是否服从泊松分布等。通过让学生们亲自做实验,不仅使他们能够探索随机现象的统计规律性,还能帮助他们更深刻的理解、巩固和深化理论。
2.课后作业。除常规概率统计练习题目外,可以增加一些有趣的、与日常生活中密切相关的概率统计题目。比如在给出了摸彩票规则和中奖规则后,解决下面三个问题:
(1)中奖概率与摸彩票的次序有关系吗?
(2)假设发行了100万张彩票,中一、二等奖的概率是多少?
(3)若你打算摸彩票,在什么条件下中奖概率会大一些?
3.课外实践。针对概率统计实用性强的特点,有目的地组织学生参加社会实践活动,深入实际,调查研究,收集数学建模的素材。只有将某种思想方法应用到实践中去,实际解决几个问题,才能达到理解、深化、巩固和提高的效果。教师可以从现实中寻找素材,选择具有丰富现实背景的学习材料,可以让学生自由组队,深入实际,运用统计方法调查、观察和收集一些数据,在教师指导下运用所学知识和计算机技术,分析解决一些实际问题,写出书面报告。比如利用闲暇时间观察校门口某路公交车各时段乘车人数,根据观察数据,为该线路设计一个便于操作的公交车调度方案:包括发车时刻表;共需多少辆车;以怎样的程度能够照顾乘客和公交公司双方的利益。
四、改变传统单一的考核方式
考核是教学过程中不可缺少的一个教学环节,是检验学生学习情况,评估教师教学质量的手段。传统的概率论与数理统计课程均采用期末闭卷考试,教师通常都会按照固定的内容和格式出题,学生为了应付考试,往往把过多的精力花费在对公式和概念的死记硬背上,而忽略了所学知识在实际中的应用。虽然综合成绩是由平时成绩和期末成绩的各占比例计算而成,但平时成绩的考核主要看课后习题所做的作业,而学生的学习积极性对作业的态度差异性是很大的。为此,有必要改革传统单一的考核方式,培养学生综合运用知识的能力。考核结果包括两部分:一部分是闭卷考试,占60%,主要考察学生对概率统计的基本知识、基本运算和基本理论的掌握程度;另一部分是开放性考核,由各占20%的平时成绩和课后试验、课外实践构成,其中平时成绩主要考查学生的作业情况、考勤情况、课堂表现情况等方面;课后试验、课外实践主要考核学生对概率统计知识的应用能力,可以给学生一些实际问题,或者让学生参加社会实践调查收集数据,学生可以自由组队也可单独完成,通过运用概率统计知识建立数学模型并借助计算机处理大量数据对实际问题得到解决,最后提交一份书面研究报告。如此灵活多变的考核机制,才能充分调动学生学习的积极性和主动性,才有利于学生应用能力的培养。
通过在各个环节中融入数学建模思想,不但充分体现了概率统计的实用价值,搭建起概率统计知识与实际应用的桥梁,而且也使得工科类学生对概率统计这门课程的理解、认识增强了,数学的应用能力也得到了提高。
1、高职数学教学存在的问题
高职院校目前在高等数学课程教学过程中只注重理论学习,学生处于被动接受状态,参与度低。忽略了用数学解决实际问题的能力的培养,缺失了应用性。教师在高等数学教学过程中往往采用满堂灌,填鸭式的教学方式,学生只有大量重复的机械训练,才能掌握一些基础知识,套用现成公式做一些计算。教师的这种教学方式大大的影响了学生的学习兴趣,对数学学习长生厌恶情绪,学生学习的主观能动性也受到影响。另外,高等数学课程教学过程教学模式落后,缺少多样化,不能适应不同专业学生的要求。学生在解决实际问题时思维僵化,无从下手。为了解决这一问题,在高职数学教学中融入数学建模思想显得尤为重要。
2、数学建模教学要以学生为主体,注重综合素质培养
随着科学技术的发展,传统的教学手段也发生了变化。现代的要改变传统的教学模式,须以学生为主体,突出学生的主体地位,使他们成为课堂教学活动的主角,并积极对他们进行引导,让他们发现问题、提出问题,对教堂中的问题积极进行探索,主动思考,增强学习的能动性。由于我国教育模式一直为应试教育,学生在学习过程中只是被动的接受知识,独立思考能力和动手能力较差,并且应用意识薄弱。所以,在教学过程若想实现学生的主体地位,教师必须要培养他们学习的主观能动性。此外,不论在课堂上或者是课外教师要充分尊重学生的个人意见,并适当的给予鼓励,不要轻易否定他们思考问题的方式。在学生发表自己的意见之后,教师对他们进行表扬,鼓励他们善于思考、勇于提问和辩论,让他们始终处于主动学习的状态,使他们成为教学实践活动的主体的。在数学建模教学过程中,要对学生进行全方面的培养,既培养他们应用所学的数学知识的解决实际问题的能力,又要培养他们的综合素质,使他们具有强烈的求知欲、坚强的意志、宽广的兴趣、坚定不移的信念及积极主动进取的品质。
在实际的教学过程中,还可以引入竞争机制,对他们进行分组然后进行讨论或者是竞赛,通过这样的方式既可以增加他们之间的同学友情,又可以让他们共同进步。每组学生还可以布置一些比较难的题目,他们合作解决问题,最终完成题目的解答。在解决问题过程中,让他们意识到创新的价值和合作的重要性,从而培养他们的创新精神和团结协作精神。另外,当今学生的薄弱方面主要是语言能力及表达能力,所以对他们进行特定的培养,提高他们这两方面的能力。在教学过程中,教师要尽量给予学生更多的机会进行语言表达,包括表述自己对问题的认识和解题思路等,从而完成数学建模论文。在训练他们语言表达能力的过程中,教师要有耐心,在语言的准确性、逻辑性、简洁性等方面及时进行指导和纠正错误,从而提高他们的语言表达能力。
3、教师采用多媒体教学手段,提高教学效果
教师在数学建模教学过程中,教学方法要由传统的黑板加粉笔转化为利用多媒体教学,以此来培养学生的应用能力,也提高教学效果。多媒体教学可以包含大量信息,可以直观形象的呈现教学内容,学生的学习兴趣和热情也得到很大程度的提高。采用多媒体教学手段,增加了师生之间的互动性,课程教学过程变得顺利,授课速度变快,教学效果也变得更好。在数学建模教学过程中为了实现更好的教学目标和教学效果,采用大量贴近生活的案例进行数学建模教学的。
4、开展数学建模竞赛,培养应用型人才
近几年来,全国高职院校开展数学建模竞赛成为大学生最重要的课外科技活动。大学生通过竞赛,可以提高查阅收集资料的自学能力,可以运用所学的数学知识来解决实际问题,提高了自身运用计算机解决数学模型问题的能力,使学生的竞争意识和探索研究精神增强的,为成为全面性的高技能应用型人才打下基础。在竞赛活动中,教师对学生进行培训指导的同时也有助于自我提高各方面能力。高职数学教师指导数学建模竞赛可以改变其缺乏研究主动性的现状,可以摒弃老旧的知识学习。有利于开展理论联系实际的数学教学模式,对高职数学教学改革创新有很大的推动作用。
5、总结
在高职数学教学中融入数学建模思想,教师要将学生实际生活中的问题引导到日常数学教学中,让学生自己主动思考,并自己根据所学的知识进行数学模型的构造,以此来解决实际问题,在这个过程中学生真正掌握所学知识。高职院校数学建模竞赛目前还不完善,要大力推广,不断完善。高职数学教学中融入数学建模思想,对培养高技能应用型人才和高职数学教学改革都将产生深远影响。
随着社会进步、科技创新和经济产业结构的不断调整,我国对高素质高技能应用型人才的需求正在不断扩大,高等职业教育的高规格人才培养显得尤其重要。社会上各行各业的工作人员,需要善于运用数学知识和数学思维方法来解决实际问题,方能为公司赢得经济效益和社会效益。面临新教育态势的压力,面对数学基础薄弱的学生,如何在有限教学期限内快速提升高职数学课的教学品质,成为高职高等数学教学改革的焦点。
一、高等职业教育数学课教学现状与分析
经过查阅大量文献资料、学生学情调研和教师座谈研讨,可以将目前高等职业教育数学课教学现状归因为课程特点、教师和学生三个方面。
1、数学课的特点。数学是一门与现实世界紧密联系的科学语言和基础的自然学科,其形式极为抽象。学生学到数学概念、方法和结论,并未掌握数学学科精髓,未使数学成为解决实际问题的利器。
2、教师方面。课堂上,教师卖力的教授“有用”的理论和方法,但学生学得吃力且效果不佳。现在,部分教师将实际生活中的鲜活例子融入数学课的教授,打破了数学教学体系和内容自我封闭的僵局,但有些教师将“数学教育是一种素质教育”阻碍为抽象、深奥的课程,严重挫伤了学生学习的积极性。
3、学生方面。就高职生学情而言,生源大多来自高考第五批等录取批次,普遍不晓得数学理性思维对人思维能力培养的重要性,高职生学习目标不明确,学习习惯尚未养成,学习动力不足。此外,面对大量抽象符号和逻辑推理,形象思维强的高职生极易产生抵触心理。上述分析表明,要想实现“数学教育本质上是一种素质教育,数学的教学不能完全和外部世界隔离开来”,就需要改变数学教育按部就班的静态教学现状,创新教学模式,激发学生的主体参与意识,方能形成生动、活泼、有趣的数学课堂。
二、数学建模在高等职业教育人才培养过程中的意义和作用
从公元前3世纪的欧几里得几何,开普勒的行星运动三大规律到近代的流体力学等重要方程,数学建模的悠久历史可见一斑。
1、数学建模的桥梁作用。随着大数据时代的到来,大量数据爆炸性的涌入银行、超市、宾馆、机场的计算机系统,都需要进行归纳整理、去伪存真、分析和汇总。因此,需要在实际问题和数学方法两者之间架设一个桥梁,这个桥梁就是数学模型。
2、数学建模思想融入高职数学课堂的意义。鉴于高等职业教育数学课教学现状与分析,结合数学建模进入高等院校数学课堂时机的日渐成熟,以及高等职业教育旨在培养高职生如何“用数学”而非“算数学”的目标,将数学建模思想融入高职数学课堂有着积极肯定的意义。
(1)时机成熟。随着大型快速计算机技术及数学软件的快速发展,早期大型水坝的应力计算、航空发动机的涡轮叶片设计等数学模型中的数学问题迎刃而解,数学建模与科学计算的完美结合成为数学科学技术转化的主要途径。计量经济学、人口控制论等新兴的交叉学科为数学建模提供了广阔的应用新天地。
(2)目标明确。数学建模的切入搭建了数学和外部世界的桥梁,解开了数学课堂教学的困境,让高职生以数学为工具去分析、解决现实生活中实际问题的目标切实可行。面对工程技术、经济管理和社会生活等领域中的实际问题,拥有敏锐洞察力的高职生面对现实问题的挑战,主动好奇的参与到资料收集、调查研究过程中来,能够摆脱惯性思维模式,敢于向传统知识挑战,尝试多样解题方式,不仅激发了学习动机,提升了数学知识水平,更有助于学生创新精神和能力的培养,让其在体会数学建模魅力和实用性的同时,渗透数学应用能力。
三、数学建模在高等数学教学中的应用实践
学生走上工作岗位后,无形中会利用数学建模思想来解决实际问题。那么,如何有效的将数学建模“植入”高数课程教学,则需要一系列科学合理有序的教学改革方可取得成效。
(1)融入数学建模思想的高职特色教材。作为教学载体,高职数学教材应从应用性职业岗位需求出发,以专业为服务对象,以实践操作为重点,以能力培养为本位,以素质培养为目的撰写情境式案例驱动的高职特色教材。
(2)构建服务专业的高职数学教学模式。以学校专业需求为服务出发点,制定专业特色鲜明的数学课程教学新体系,搭建课程的“公有”模块和“选学”模块,加强专业针对性。与服务专业类似,对于不同年级、不同数学基础学生的需求,提供个性化、分层化、系列化的教学内容,显得尤为关键。
(3)培养数学应用意识的案例教学方法。历届全国大学生数学建模竞赛参赛数量和规模的扩张使我们懂得:以热点案例出发,能够激发学生的求知欲,在求解过程中自然引出系列数学知识点,通过数学建模,让学生体会数学是刻画现实世界的数学模型,品味数学乐趣,趣化学习过程,强化数学知识应用意识,树立学生主体意识并培养学生创新意识和能力。
(4)营造数学应用意识的数学实验氛围。利用数学软件,通过寥寥数行代码解决曾经无从下手的复杂问题,必会吸引学生从耗费时间的复杂计算转移到数学建模思想、数学方法的理解和应用,培养以数学和计算机分析和解决实际问题的能力,提高数学应用意识。
(5)指导学生参加全国大学生数学建模竞赛。历届数学建模竞赛从内容到形式,都是一场与真实工作环境接近的真刀真枪的历练,要求学生团队综合运用数学及其他学科知识、使用计算机技术通过数学建模来分析、解决现实问题。从“乘公交,看奥运”、“世博会影响力的定量评估”到“SARS的传播”、“饮酒驾车”,这些开放、挑战性问题,必然会提高学生的洞察力、想象力、创造力和协作精神。
四、数学建模在高等数学教学中的实践效果
自20xx伊始,将数学建模和数学实验引入高职数学课程教学中以来,学生主动学习意愿增强,学习效果显著提升。效果主要表现实际问题求解的多样性和开放性使得学生思维得以激活和解放,解题的自由使得互联网应用达到最优化。学院连续多年组织学生参加北京市高职高专大学生数学竞赛多次获得一、二、三等奖,在全国大学生数学建模竞赛中获得多项北京市一等奖,近两年获得国家二等奖2项、国家一等奖1项的佳绩。经过共同努力,应用数学基础获批为国家精品资源共享课。需要强调三点:首先,案例教学中要科学合理的训练学生的“双向翻译”能力,要培养学生应用数学语言把实际问题翻译为明确的数学问题,再把数学问题的解翻译成常人能理解的语言。其次,所有教学活动要以学生为中心,并且离不开教师煞费苦心精心设计的教学活动,因为数学建模、指导数学实验和辅导学生参加竞赛需要教师掌握算法、优化、统计、数学软件、计算机编程等综合能力,因而教师尤为关键。再者,学院领导对数学建模、数学实验在人才培养过程中的重要性要有清晰充分的认识,才会有力度的支持数学教学改革。
五、结语
将数学建模思想和方法融入高职数学课程教学是一种先进的教育教学改革理念,是提升高职数学教学品质的关键,需要广大教师踏踏实实的钻研和工作,真正讲好每一个案例,为培养具备数学应用意识的高规格人才而努力。
1引言
数学模型的难点在于建模的方法和思路,目前学术界已经有各种各样的建模方法,例如概率论方法、图论方法、微积分方法等,本文主要研究的是如何利用方程思想建立数学模型从而解决实际问题。实际生活中的很多问题都不是连续型的,例如人口数、商品价格等都是呈现离散型变化的趋势,碰到这种问题可以考虑采用差分方程或差分方程组的方式进行表示。有时候人们除了想要了解问题的起因和结果外还希望对中间的速度以及随时间变化的趋势进行探索,这个时候就要用到微分方程或微分方程组来进行表示。以上只是简单的举两个例子,其实方程的应用极为广泛,只要有关变化的问题都可以考虑利用方程的思想建立数学模型,例如常见的投资、军事等领域。利用方程思想建立的数学模型可以更为方便地观察到整个问题的动态变化过程,并且根据这一变化过程对未来的状况进行分析和预测,为决策的制定和方案的选择提供参考依据。利用方程建立数学模型时就想前文所说的那样,如果是离散型变化问题可以考虑采用差分思想建模,如果是连续型变化问题可以考虑采用常微分方程建立模型。对于它们建模的方式方法可以根据几个具体的实例说明。
2方程在数学建模中的应用举例
2.1常微分方程建模的应用举例
正如前文所述,常微分方程的思想重点是对那些过程描述的变量问题进行数学建模,从而解决实际的变化问题,这里举一个例子来说明。例1人口数量变化的逻辑斯蒂数学方程模型在18世纪的时候,很多学者都对人口的增长进行了研究,英国的学者马尔萨斯经过多年的研究统计发现,人口的净相对增长率是不变的,也就是说人口的净增长率和总人口数的比值是个常数,根据这一前提条件建立人口数量的变化模型,并且对这一模型进行分析研究,找出其存在的问题,并提出改进措施。解:假设开始的时间为t,时间的间隔为Δt,这样可以得出在Δt的时间内人口增长量为N(t+Δt)-N(t)=rN(t)Δt,由此可以得出以下式子。dN(t)dt=rN(t)N(t0)=N{0(1)对于这种一阶常微分方程可以采用分离变量法进行求解,最终解得N(t)=N0er(t-t0)而后将过去数据中的r、N0√★√带入上述式子中就可以得出最后的结果。这个式子表明人口数量在自然增长的情况下是呈指数规律增长的,而且把这个公式对过去和未来的人口数量进行对比分析发现还是相当准确的,但是把这个模型用到几百年以后,就可以发现一些问题了,例如到2670年的时候,如果仍然根据这一模型,那么那个时候世界人口就会有3.6万亿,这已经大大的超过了地球可以承受的最大限度,所以这个模型是需要有前提的,前提就是地球上的资源对人口数量的限制。荷兰的生物学家韦尔侯斯特根据逻辑斯蒂数学方法和实际的调查统计引入了一个新的常数Nm,这个常数就是用来控制地球上所能承受的最大人口数,将这一常数融入逻辑斯蒂方程可以得出以下的式子。dN(t)dt=rN(t)(1-N(t)Nm)N(t0)=N{0(2)该方程解为N(t)=Nm1+NmN0e-r(t-t0)一个新的数学模型建立后,首先要做的就是验证它的正确性,经过研究发现在1930年之前的验证中还是比较吻合的,但是到了1930年之后,用这个模型求出的人口数量就与实际情况存在很大的误差,而且这一误差呈现越来越大的变化趋势。这就说明当初设定的人口极限发生了变化,这是由于随着科学技术的不断进步,人们可以利用的资源越来越多,导致人口极限也呈现变大的趋势。
2.2差分方程建模的应用举例
如前文所言,对于离散型问题可以采用差分方程的方法建立数学模型。例如以25岁为人类的生育年龄,就可以得出以下的数学模型。yk+1-yk=ryk(1-ykN),k=0,1,2,…即为yk+1=(r+1)yk[1-r(r+1)Nyk]其中r为固有增长率,N为最大容量,yk表示第k代的人口数量,若yk=N,则yk+1,yk+2,…=N,y*=N是平衡点。令xk=r(r+1)Nyk,记b=r+1。xk+1=bxk(1-xk)这个方程模型是一个非线性差分方程,在解决的过程中我们只需知道x0,就可以计算出xk。如果单纯的考虑平衡点,就会有下面的式子。x=f(x)=bx(1-x),则x*=rr+1=1-1bx因为f'(x*)=b(1-2x*)=2-b,当|f'(x*)|<1时稳定,当|f'(x*)|>1时不稳定。所以,当1<b<2或2<b<3时,xkk→仯仯仭∞x*.当b>3时,xk不稳定。2.3偏微分方程建模的应用举例在实际生活中如果有多个状态变量同时随时间不断的变化,那么这个时候就可以考虑采用偏微分方程的方法建立数学模型,还是以人口数量增长模型为例,根据前文分析已经知道建立的模型都是存在一定的局限性的,对于人类来说必须要将个体之间的区别考虑进去,尤其是年龄的限制,这时的人口数量增长模型就可以用以下的式子来表示。祊(t,r)祎+祊(t,r)祌=-μ(t,r)p(t,r)+φ(t,r)p(0,r)=p0(r);p(t,r0)=∫r2r1β(r,t)p(t,r)d{r其中,p(t,r)主要表示在t时候处于r岁的人口密度分布情况,μ(t,r)表示的r岁人口死亡率,φ(t,r)表示r岁人口的迁移率,β(r,t)表示r岁的人的生育率。除此之外,式子中的积分下限r1表示能够生育的最小岁数,r2表示能够生育的最大岁数。根据人口数量增长的篇微分方程可以看出实际生活中的人口数量与年龄分布、死亡率和出生率都有着密不可分的关系,这与客观事实正好相吻合,所以这一个人口增长模型能够更为准确地反应人口的增长趋势。当然如果把微分方程中的年龄当做一个固定的值,那么就由偏微分方程转化成了常微分方程。另外如果令μ(t,r)=-r,p(t,r)=N(t),N(0)=N0,φ=rN2(t)/Nm,那么上述偏微分方程就变成了Verhulst模型。偏微分方程在实际生活中的应用也相当广泛,物理学、生态学等多个领域的问题都可以通过建立偏微分方程来求解。
3结束语
上世纪六七十年代,数学建模进入一些西方大学,紧随其后,八十年代它进入中国的部分高校课堂。把方程式引入到数学建模中是数学建模更具体和更实际的应用,方程式的空间性和抽象性决定了它需要借助数学建模来更直观和更立体地展示自己。20多年的本土适应和自身完善使绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程、讲座和竞赛。方程在数学建模中的思想和应用对于数学课堂效果本身和培养学生的动手和操作能力均有重要意义:一方面,它利于激励学生学习方程的积极性,培养学生建立数学模型的创造性和行动性;另一方面,它有效推动数学教学体系、教学内容和方法的改革,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。