单词励志故事的述职成语弟子规反义词了台词条例聘书:举报信对照检查名词管理条例的听课思想品德复习题,格言陆游新闻宣传!陶渊明材料信创业项目周记:纪要简章条例表态发言的主要教材工作悼词请柬志愿书借条申请书。下面是整理的数学建模论文(最新9篇),您的肯定与分享是对小编最大的鼓励。
摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一、要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
二、通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。
学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:
现实原型问题
数学模型
数学抽象
简化原则
演算推理
现实原型问题的解
数学模型的解
反映性原则
返回解释
列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。
三、结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。
高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。
分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:
(1)该国的政治、经济、社会环境稳定;
(2)该国的人口增长数由人口的生育,死亡引起;
(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。
通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。
四、培养学生的其他能力,完善数学建模思想。
由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:
(1)理解实际问题的能力;
(2)洞察能力,即关于抓住系统要点的能力;
(3)抽象分析问题的能力;
(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;
(5)运用数学知识的能力;
(6)通过实际加以检验的能力。
只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。
例2:解方程组
x+y+z=1
(1)x2+y2+z2=1/3
(2)x3+y3+z3=1/9
(3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根
t3-t2+1/3t-1/27=0
(4)函数模型:
由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)。
平面解析模型
方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。
总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。
摘要:高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。
关键词:数学;教学;数学建模
1、数学建模思想的意义
数学建模是指用数学符号将要求从定量角度进行研究分析的实际问题以公式的形式表述出来,再通过进一步计算得到相关结果,用该结果解决实际问题,即通过建立数学模型和求解的整个过程。数学建模是符合学生认知发展过程的,在数学建模中,学生通过对具体的假设、研究,对问题进行深入思考,最终得到结论,再根据实际情况应用到具体问题中。整个过程经历了提出问题、试探问题、提出猜想假设、验证问题及得出结论,整个过程符合学生认知发展的规律。数学建模思想的应用有助于帮助学生提高对数学的重视程度,调动学生学习的主动性,让学生的创造力得到更大的发挥。数学建模的应用对提高教师的教学水平也有所帮助,能够帮助教师更好地对学生进行教学,由此扩大教师在学生中的影响力。教学建模的思想应用还有利于提高学生参加竞赛的综合能力,吸引更多学生参加此类竞赛活动。
2、建模思想对能力的培养
数学建模思想很多是由实际问题的一般思维进行转变才能成为抽象的数学问题的,这要求对数学建模要抓住重点,从具体问题中抽象出问题的本质。因此,建模思想对于培养学生将具体问题经过抽象和简化用数学语言表达的能力具有重要的意义。在高职数学教学中,有很多的数学模型,这些数学模型为帮助学生解决实际问题提供了便利的方法,同时也为创建新的数学模型提供了基础依据。数学建模是将数学理论知识和实际应用联系起来的重要纽带,能够帮助学生不断探索数学中的奥妙,以此提高学生对数学的学习兴趣,提高学生实际应用数学的能力和解决实际问题的能力。运用数学建模解决实际问题的过程中,要根据已知条件的变化,灵活运用新方法和新途径促进学生综合运用能力和创新思维的发展。
3、数学建模在高职数学教学中的应用
3.1利用教学内容渗透数学建模思想在数学教学中,教师要根据教材的情况和学生的实际情况,将两者相联系,让学生能够运用数学建模思想寻找解决问题的办法,解决实际问题。在教学中,教师要向学生灌输数学建模思想,利用具体模型设置和假设情景,把数学知识和实际生活相联系,帮助学生更好地理解数学实际内容,提高知识应用能力。比如在高职数学对定积分概念进行教学时,就可以通过介绍曲边梯形的面积求法,让学生学会分割、求和、取极限的定积分模型思想,然后再进行思考,求物体的体积、质量等。如果学生发现解决这些问题的数学模型的思想基本相同,就会不断拓展新思路解决其他问题。运用这种方式,能够加深学生对概念的理解,拓展学习思维,强化教学效果。在学习定理公式的时候,也可以引进数学建模思想,通过提出问题、假设问题,要求学生计算求值,再根据值的正负情况求出方程式的根,根据根值与区间的关系,引导学生想出零点定理的概念总结。
3.2利用实际问题渗透教学建模思想教师在数学建模教学或布置作业时,要与实际的生活相联系,让学生在实际问题的解决中学会运用建模思想。比如在问题的设置上,可以利用身边熟悉的事物进行提问,让学生从熟悉的环境中找到合适的解决方法。这不仅能够帮助学生更好地理解知识概念,还与学生以后的工作有着紧密的联系。通过在实际问题中渗透教学建模思想,让学生掌握基本的理论知识,提高知识应用能力。此外,教师在课外作业的布置上也要运用数学建模思想解决实际的问题,让学生能够有效利用所学的数学知识分析解决生活中的问题,从而提高知识应用能力,培养出学生的创新思维,提高高职数学建模教学的效率。
3.3提高数学建模思想在教材编写中的应用目前高职数学的教材基本都是按照本科教材进行编排的,重视理论而忽视了应用。高职学生大多数对理论的兴趣不大,对实际应用能够产生一定的兴趣,并较好地进行掌握。所以编写出一本适合高职培养的目标教材是十分重要的,既能满足高职数学建模思想的可持续发展要求,又能充分满足学生的要求,实现高职的培养目标。在高职数学教材的编写上,要重视学生的实际水平,不但要让学生能够学到相应的知识,还要为以后的学习打好基础,培养学生的创造力和进一步深造的能力。教师要把数学建模思想方法运用到教材中,让学生带着问题学习,把讲授的知识点和数学建模思想有机结合,提高学生掌握实际问题的能力,彻底让学生摆脱数学乏味论的问题,能够对所学内容学以致用。
4、提高高职数学教学数学建模思想的方式
4.1教师要重视引导高职教师需要认识到讲授知识并不是教学的终极目标,更主要的是培养学生的应用和创新能力。其教学目的应当是通过科学的数学思维方式培养学生分析问题、解决问题的能力,提高他们自主学习的意识。高职学生的整体知识水平并不是很高,对于很多问题都不能深入地进行思考,遇到难题也没有继续深入研究的动力,缺乏自主创新的意识和独立思考的能力。所以教师需要重视引导的作用,引导学生的思维向更广阔的方向发展,让学生能够用数学思维看待周围的事物,仔细观察、分析各种事物之间的联系和存在的数学模型,并且能够通过数学语言描述事物间的联系,进而用求知的方式解决事物间的实际问题。教师的引导对于学生而言有启迪作用,能够激发学生的求知欲,对数学问题产生兴趣,在实际教学中是一种重要的教学手段。
4.2重视合作的力量教师除了积极引导学生进行数学建模思想外,还要让学生学会用合作的方式提升自己的思维水平。合作可以利用整体的功能弥补一个人思维的狭隘面,解决思考单一问题,促进学生多方面、多角度地思考问题。合作让学生能够尽快找到合适的角色,通过互帮互助的方式共同提高,加快问题的解决。在合作中,学生能够准确利用自己熟悉擅长的环节帮助提高整体的成绩和思维水平,切实加强团队的整体水平和综合素质。团体合作还能让每个学生都参与进去,都有展示和锻炼自己的机会,从而增强自信心,提高学习能力,培养良好的沟通能力,促进学生之间的团结合作,帮助提高学生的交往能力。重视合作的力量,能够帮助学生发现自己的特长和特点,增强信心,提高自我探索精神,同时合作中产生的竞争也能激发学生对数学问题进行深入探究。
4.3重视数学建模过程数学建模的最终目标并不是解决了什么样的问题、获得了什么样的结论,而是在建模过程中学生能够通过自己的努力,不断进行实践和自我否定,最终找到解决具体问题的有效方式。数学建模过程也是一个学习的过程和一个不断提升自我的过程,所以教师要重视数学建模的过程,让学生感受到实践过程的魅力,根据学生的基本状况和不同的特点,综合利用学生的特长和优点提高他们解决实际问题的能力,让学生感受到数学的意义,体会到发现数学的乐趣,养成良好的学习习惯和思维习惯。教师通过引导学生,也要让学生重视数学建模的过程,从数学建模中发现学习的乐趣,产生学好数学的信心和动力,并且通过不断深造发展,能够在数学建模中发挥自己的才能,展现出自己擅长的一面,在建模和交流中获得感受和启发。
5结语
高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。教学中只有通过不断创新,根据教学的实际情况提高学生的数学知识应用能力,这样才能不断提高学习效率,帮助学生为以后的学习和工作打下坚实的基础。
摘要:数学建模作为一种学习竞赛活动,最早源于美国教学领域,其参与主体主要为大学生群体。在数学建模传入我国数学教学领域后,数学建模的学生参与对象扩展到中学生和初中生。而近年出现的初中数学建模,更多的是以一种初中数学教学的策略方法存在,对其教学策略进行探究,有助于初中数学建模教学的顺利推进。
关键词:初中数学;“数学建模”;教学
一、初中学建模”的意义
初中建模是指学生在教师预设的与学习课本知识有关的生活情境中,通过一定的数学活动建立数学模型、解释数学模型和应用数学模型,并以此为载体学习初中数学相关知识。数学建模大多是在大学生数学学习过程中被提及,而其目的是将所学的数学知识合理的应用到实际的生活中,具有较强的应用性及实践性,与此不同的是,初中数学教学中强调数学建模则是为了让学生学习并掌握新的知识,提高学生能力,形成新思想并体验教学活动等。初中数学建模其包含的知识结构较为基础、相对简单,作为一种教学策略,通常由教师事先设计好再开展教学活动,需要由教师进行直接参与。可见,初中数学建模已成为一种数学教学的教学模式。初中数学模型教学过程的本质是让学生参与到数学探索和实践的活动中,让学生主动参与到数学学习的整个过程中,积极探索、获取新知识,这一教学模式转变了以往枯燥乏味的数学学习模式,从单纯记忆、模仿以及训练的数学学习方式转变为学生进行自主探索、实践创新的过程。对于学生来说,不仅让学生学习到数学知识,还能体会到数学的乐趣,激发学习兴趣,树立学习信心,强化了学生主动参与到数学学习中的热情及主动性。可见,开展初中数学建模教学模式不仅是教育方式上的改革,更能提高学生的自主意识、探究能力,发展学生的综合实践能力及创新能力,推动初中数学教育的发展及改革。
二、“数学建模”教学方法在初中数学教学中的运用流程
在初中数学教学过程中对数学建模教学方法的运用主要包括:模型准备,模型假设、模型建构以及模型应用与检验四个方面的内容。
1、模型准备
数学建模的实现有赖于对一定现实情境的分析。初中数学教学中数学建模所面对的现实情境问题,往往是教师根据教学需要精心设计出来的预设问题。教师通过将学生的生活和数学教学的实际需要进行有机的结合,创设出符合学生实际的生活情境,为初中数学教学中数学模型的建构提供丰富的生活体验,让学生更容易借助固有的经验体会到其中隐含的数学问题。数学建模是一个由具体现象到抽象概括的建构过程。
2、模型假设
数学建模的过程主要是根据实际问题的特征和建模的目的,对现实问题进行必要的简化过程,通过精确的数学语言把实际问题描述出来,从而实现从实际问题到为数学问题的转化过程。用精确的语言提出合理假设,是数学模型成立的前提条件,也是数学建模最关键的一步。由于初中生的身心发展特点导致其本身认知能力存在一定的缺陷,加上初中数学建模自身的特殊性,在初中数学教学过程中,教师要注意学生对问题情境的解读是循序渐进的,教师更多的参与、引导和整合能够帮助学生更好地学习和掌握对数学建模的运用。
3、模型建构
对数学模型的建构要充分考虑初中生的接受和认知能力,要立足学生的角度,让学生亲身经历建构数学模型的过程,这样才能让学生更好地掌握和运用数学建模。教师在教学过程中应该鼓励学生采用多样化的探究策略,根据自身的知识水平和实践能力选择不同问题解决的方式,帮助学生自主构建数学模型。
数学模型是用数学解决实际问题时使用的一种方法,它往往是一组具体的数学关系式或一套具体的算法流程,它是一种数学的思考方法,同时也是逻辑思维的思考方式,构建数学模型是数学建模的关键。对数学模型的建构和运用的核心目标是实现对学生数学逻辑思维方式的培养,提升学生的数学思维和实际解决问题的能力,因此对数学模型的建构一定要立足实践,让理论与实践相融合,既适应学生的认知能力发展水平又充分满足教学目标的需要。
4、模型运用与检验
在数学教学中对数学建模的运用,其目的是更好的解决现实问题。因此,数学模型最终还是要回归对实际问题的运用与解决。只有在对实际问题解决的过程中,才能使数学模型具有生命力,实现自身的价值,对初中数学的发展发挥应有的作用。对数学建模的结果检验包括检验和应用两部分,对数学模型的每一次应用都是对模型的一次检验。在初中数学建模中,受初中生知识水平和认知能力的限制,对数学建模检验的重点只能放在模型的应用方面。数学是一门应用性非常强的基础科学,只有在不断的实践应用中才能获取数学知识的精髓,数学模型可以在很大程度上帮助学生深刻领会所学知识,顺利构建数学体系,从而大大提高学生解决实际问题的能力,全面提升学生的综合素质。同时,初中数学建模流程并不是一成不变的,它要根据教学内容、教学对象、教学进度等实际状况,进行灵活选择。
三、如何将“数学建模”教学方法应用到教学实践中
1、全面有针对性地选取适宜的教学内容
初中数学建模教学方法经过教学实践的检验对有效开展数学教学有重要的教学意义,但是初中阶段数学教学内容中不是所有内容都适宜运用“数学建模”教学方法开展教学。所以,初中数学教师要注意对教学内容进行筛选,选取针对性较强且适宜运用该教学方法的数学内容开展教学,使教学可以达到事半功倍的效果。例如轴对称图形的移动教学则较适宜运用“数学建模”教学方法开展教学,教师可以将不同的二维图形呈现给学生,以一条直线为对称中线将其进行旋转、翻折使其产生“轴对称”的效果,同时教师运用字母或数字的形式标记翻折前与翻折后图形的对应点,使学生通过教师的演示在头脑中建立与之相关的图形翻折过程,形成数学思维建模,提升数学课堂教学质量水平。
2、教学环节设计要注意科学性、合理化
教学环节的设计科学性和合理化是运用“数学建模”教学方法开展数学教学成功与否的重要影响因素之一。比如动画片中的皇宫建筑蕴含着不同“角”的构成,并带领学生将“直角、钝角、锐角”概念与不同形状的图形相结合并运用到实际数学设计中,设计出自己的城堡,调动学生学习复杂数学内容的主动性,培养学生应用数学的能力,进而提升数学教学效果和水平。
在我国当下的初中数学教学中,“数学建模”这一教学模式可以很好地实现教学目标,并有效的提高数学教学效果,在培养学生的数学思维能力方面,也有一定的促进作用。如果该模式能够在初中数学部分教学内容中得到拓展和应用,将有利于初中数学教师教学水平的提高。
参考文献:
[1]陈修臻。数学建模思想在初中数学教学中的应用研究[D]。山东师范大学,2015.
[2]张钦。基于建模思想的初中数学教学设计研究[D]。淮北师范大学,2015.
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文范文,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。
数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。
因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。
一般来说",数学建模"包含五个阶段。
1、准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2、假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3、建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4、求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5、验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。
如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。
数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。
因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成"[1]。现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。
而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。
同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2]。
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。
经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。
要较好地完成任务,离不开良好的组织与管理、分工与协作[3]。
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。
案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。
其选取一般要遵循以下几点。
1、 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2、 原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3、 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。
还要强调如何用求解结果去解释实际现象即检验模型。
另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。
最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4]。
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。
每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。
如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。
学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。
这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代网络技术为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。
以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。
[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。
笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。
多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。
又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。
参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。
因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M]。上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。
数学建模的认识与实践[J]。浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J]。中国高教研究,2011,12:79-83.
[4]饶从军,王成。
论高校数学建模教学[J]。延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。
数学建模课程教学改革初探[J]。教育与职业,2013,5:140-142.
[6]郝鹏鹏。
工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
一、在高等数学教学中运用数学建模思想的重要性
(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。
(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。
(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。
二、高等数学教学中数学建模能力的培养策略
1、教师要具备数学建模思想意识
在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。
2、实现数学建模思想和高等数学教材的互相结合
教师在讲解高等数学时,对其中能够引入数学模型的章节,要构建相关的数学模型,对其提出相应的问题,进行分析和处理。在该基础上,提出假设,实现数学模型的完善。教师在高等数学的教学中融入建模意识,让学生潜移默化的感受到建模思想在高等数学教学中应用的效果。这样有利于提高学生数学知识的运用能力和学习兴趣。例如,在进行教学时,针对学生所学专业的特点,选择科学、合理的数学案例,运用数学建模思想对其进行相应的加工后,作为高等数学讲授的应用例题。这样不仅能够让学生发现数学发挥的巨大作用,而且还能够有效的提高学生的数学解题水平。另外,数学课结束后,转变以往的作业模式,给学生布置一些具有专业性、数学性的习题,让学生充分利用网络资源,自主建立数学模型,有效的解决问题。
3、理清高等数学名词的概念
高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学
教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。
4、加强数学应用问题的培养
高等数学中,主要有以下几种应用问题:
(1)最值问题
在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。
(2)微分方程
在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。
(3)定积分
微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。
三、结语
总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。
一:对偶问题:
一、问题重述
有一工厂用设备A、B及原料生产甲、乙、丙三种产品,请通过已知生产各种产品的消耗、设备及原材料的可用数量及单位产品的利润求解以下问题: (1)使利润最大的生产计划?
(2)若甲产品的单位利润下降为20元,此时的利润有无变化?变化如何?
(3)若生产单位丙产品的原料消耗由2.5千克下降到2.2千克,最优生产计划有无变化?该厂的利润有无变化?
(4)若设备A的可用数量降至1200台时,则最优生产计划及利润有什么变化?
二、符号说明
X 表示甲产品的生产数量; Y 表示乙产品的生产数量; Z 表示丙产品的生产数量。
三、模型的建立与求解
(1)Max N=23X+35Y+30Z 0.5x0.8y0.6z1400S.T. 0.3x0.6y0.4z800
2x3y2.5z5100
(1)代入LINGO求解如下:
MAX=23*x+35*y+30*z; 0.5*x+0.8*y+0.6*z<=1400; 0.3*x+0.6*y+0.4*z<=800; 2*x+3*y+2.5*z<=5100; 运行结果如下:
Global optimal solution found at iteration: 3 Objective value: 60400.00
Variable Value Reduced Cost X 800.0000 0.000000 Y 0.000000 7.000000 Z 1400.000 0.000000
Row Slack or Surplus Dual Price 1 60400.00 1.000000 2 160.0000 0.000000 3 0.000000 50.00000 4 0.000000 4.000000
由上可知:要使利润最大应生产A 800件,C 1400件,此时的利润为60400元。
(2)Max N=20X+35Y+30Z 0.5x0.8y0.6z1400S.T. 0.3x0.6y0.4z800
2x3y2.5z5100
(2)代入LINGO求解如下:
MAX=20*x+35*y+30*z; 0.5*x+0.8*y+0.6*z<=1400; 0.3*x+0.6*y+0.4*z<=800; 2*x+3*y+2.5*z<=5100; 运行结果如下:
Global optimal solution found at iteration: 2 Objective value: 60000.00
Variable Value Reduced Cost X 0.000000 2.500000 Y 0.000000 10.00000 Z 2000.000 0.000000
Row Slack or Surplus Dual Price 1 60000.00 1.000000 2 200.0000 0.000000 3 0.000000 75.00000 4 100.0000 0.000000
若甲产品的单位利润下降为20元,则该厂的利润下降为60000元。 (3)Max N=23X+35Y+30Z 0.5x0.8y0.6z1400S.T. 0.3x0.6y0.4z800
2x3y2.2z5100
(3)代入LINGO求解如下:
MAX=23*x+35*y+30*z; 0.5*x+0.8*y+0.6*z<=1400; 0.3*x+0.6*y+0.4*z<=800; 2*x+3*y+2.2*z<=5100; 运行结果如下:
Global optimal solution found at iteration: 3 Objective value: 61000.00
Variable Value Reduced Cost X 2000.000 0.000000 Y 0.000000 9.571429 Z 500.0000 0.000000
Row Slack or Surplus Dual Price 1 61000.00 1.000000 2 100.0000 0.000000 3 0.000000 67.14286 4 0.000000 1.428571
若生产单位丙产品的原料消耗由2.5千克下降到2.2千克,最优生产计划变为:生产A 2000件,C 500件,利润为61000元。
(4)Max N=23X+35Y+30Z
0.5x0.8y0.6z1200S.T. 0.3x0.6y0.4z800
2x3y2.5z5100
(4)代入LINGO求解如下:
MAX=23*x+35*y+30*z; 0.5*x+0.8*y+0.6*z<=1200; 0.3*x+0.6*y+0.4*z<=800; 2*x+3*y+2.2*z<=5100; 运行结果如下:
Global optimal solution found at iteration: 3 Objective value: 60000.00
Variable Value Reduced Cost X 0.000000 0.000000 Y 0.000000 9.000000 Z 2000.000 0.000000
Row Slack or Surplus Dual Price 1 60000.00 1.000000 2 0.000000 10.00000 3 0.000000 60.00000 4 700.0000 0.000000
若设备A的可用数量降至1200台时,最优生产计划变为:只生产C 2000件,利润下降为60000元。
二:运输问题:
一、问题重述
一公司有四个原料基地(A,B,C,D),供应三个工厂(甲,乙,丙),每个原料基地的月供应能力已知,三个加工厂的月需求量已知,每个原料基地至每个城市的单位运价已知,为了使该公司的总运费最小,应如何合理安排运输。
二、符号说明
x表示从i原料基地(A,B,C,D),运到j加工厂(甲,乙,丙)的原料数量; c表示从i原料基地到j加工厂的运价; ai为i原料基地的月供应能力; b为j工厂的月需求量。 ijijj
三、模型的建立与求解 因为ai=20、bj=20,所以该问题是一个产销平衡问题。由题意可建立i143j1如下模型:
Min Z=cxi1j1ij43ij
43i1,2,3,4xaj1iji1iS.T.
4 3xbj1,2,3ijjj1i1代入LINGO求解如下:
min=3*x11+5*x12+9*x13+4*x21+x22+5*x23+7*x31+3*x32+2*x33+12*x41+5*x42+8*x43; x11+x12+x13=5; x21+x22+x23=4; x31+x32+x33=9; x41+x42+x43=2; x11+x21+x31+x41=8; x12+x22+x32+x42=7; x13+x23+x33+x43=5; 运行结果如下:
Global optimal solution found at iteration: 4 Objective value: 60.00000
Variable Value Reduced Cost X11 5.000000 0.000000 X12 0.000000 5.000000 X13 0.000000 10.00000 X21 3.000000 0.000000 X22 1.000000 0.000000 X23 0.000000 5.000000 X31 0.000000 1.000000 X32 4.000000 0.000000 X33 5.000000 0.000000 X41 0.000000 4.000000 X42 2.000000 0.000000 X43 0.000000 4.000000
Row Slack or Surplus Dual Price 1 60.00000 -1.000000 2 0.000000 1.000000 3 0.000000 0.000000 4 0.000000 -2.000000 5 0.000000 -4.000000 6 0.000000 -4.000000 7 0.000000 -1.000000 8 0.000000 0.000000
由上可知最优方案为:从原料基地A运到甲加工厂5千吨,从原料基地B运到甲加工厂3千吨,从原料基地B运到乙加工厂1千吨,从原料基地C运到乙加工厂4千吨,从原料基地C运到丙加工厂5千吨,从原料基地D运到乙加工厂2千吨;总运费为60万元。
三:整数规划问题:
一、问题重述
一跨国公司计划在一地区建若干个加工厂,现有七个城市A,B,C,D,E,F,G可以选择,每个城市建厂投资和年生产能力已知,且每个城市的选择有一定的限制。在总投资一定的情况下应选择那几个城市建厂能使总生产能力最大。
二、符号说明
选择i城市1Xi;
不选择i城市0Ci表示i城市的年生产能力;
Bi表示i城市建厂需要的投资资金。
三、模型的建立与求解
由题意可知模型如下: Max Z=cixi
i177BiXi2500i1x1x2x32(x4x5)*(x2x6x7)0 S.T. x2x4x5x6x71x2x4x5x6x73X0或1,i1,,7i代入LINGO求解如下:
max=10*x1+13*x2+14*x3+12.5*x4+12*x5+13.5*x6+12.8*x7; 500*x1+700*x2+800*x3+650*x4+580*x5+720*x6+680*x7<=2500; x1+x2+x3=1; x2+x4+x5+x6+x7<=3; @bin(x1); @bin(x2); @bin(x3); @bin(x4); @bin(x5); @bin(x6); @bin(x7);
运行结果如下: Linearization components added: Constraints: 24 Variables: 6 Integers: 6
Global optimal solution found at iteration: 22 Objective value: 40.50000
Variable Value Reduced Cost X1 0.000000 -10.00000 X2 1.000000 -13.00000 X3 1.000000 -14.00000 X4 0.000000 -12.50000 X5 0.000000 -12.00000 X6 1.000000 -13.50000 X7 0.000000 -12.80000
Row Slack or Surplus Dual Price 1 40.50000 1.000000 2 280.0000 0.000000 3 0.000000 0.000000 4 0.000000 0.000000 5 1.000000 0.000000 6 1.000000 0.000000
由上可知最优方案为:在B,C,E城市建厂使总生产能力最大。
四:存贮论问题:
求解过程如下:
此存贮模型是一个不允许缺货的模型。且p=50000件/年,d=30000件/年,a=1000元/次,h=130*21%元/件年=27.3元/件年。由公式得:
2ad21000300002344件 Q=
30000d2731h1p50000d30000 13次;2344Q250234412天
每批生产时间
50000 每次生产所需时间 12+5=17天
25017132天 两次生产间隔时间
13Q2344 T=25012天
p50000Q250234420天 t=d30000最大存贮水平 pdT=2000012/250=960件
1113628元
生产和存贮的全年总成本 27396020132250 生产次数为 五:论文
数学建模感想
做为一个非数学专业的人,怀着对数学的兴趣,我向我大一时的徐老师报名,想参加数学建模的学习。但幸运的是我被允许参加暑假的数学建模培训,在培训的整个过程中,我学到了很多以前书本上没有的东西,培养了我的综合素质,比如英语阅读能力,计算机应用能力,检索文献能力,学习新知识的意识与能力,论文撰写能力等等。这些经历,使我更加想进入2007年的全国大学生高教社杯数学建模大赛,因此我不断的努力在图书馆和网上寻找许多新的知识,不断的学习,为我参加数学建模竞赛打下了很好的基础。
2007年9月全国数学建模大赛开始了,我和队友怀着重在参与的目的,我们做的是预测中国的人口增长情况。三天紧张的比赛给我最大的感觉就是累,在很短的时间内要完成这许多事,有许多困难是我们预先没有想到过的。三天中,我们有过激烈争吵,有过忘记吃饭的时候,有过加夜班的时候,也有为了大局而妥协的时候,有在某一篇参考文献上发现新方法的快乐,也有数据算错的苦恼。我最大的体会是:没有合作是做不好这样的事情的。现代社会需要的就是合作,合作的过程中,肯定会有各种各样的问题,需要我们有宽阔的胸怀来容纳,为了一致的目标共同努力,以达到目的。
参加数模竞赛,也给了我们一次简单的体验。做一件团队的事所需要的严谨,大胆。这所有的一切都在这样的比赛中有着完整的体现。完成论文的过程中,我们对论文作了很多次的修改,原因第一次参赛经验的不足,论文格式、论文表述不清,或者证明过程的不妥。而在整个比赛的过程中,我们更是经常否定自己好不容易构想出来的方法是不是妥当?有很多新的方法,很容易让人产生错误的判断,但是我们尝试后,一旦发现它是不完善的,就马上尽量完善它,或者寻找新的方法,这个过程耗费了我们很多心血。为的就是能做出一篇尽量科学合理的论文,在这个过程中,是我们体会到了建模的艰辛。一个好主意或“好主意”被扼杀的痛苦以及有所发现时的快乐,这些将对我们今后的学习与工作过程产生积极的作用。不久成绩出来了,我们组没有获奖,但我们收获了信心。
当然,这一点努力肯定是不够的,我要走的路很长,我将会用自己的勤奋来弥补自己不是非数学专业的不足。2008年,我定会等待你的到来,相信08的彩虹定出现在自己的头顶。 以上便是我这次参加这次数学建模竞赛的一点心得体会,只当贻笑大方,不 过就数学建模本身而言,它是魅力无穷的,它能够锻炼和考查一个人的综合素质, 也希望广大同学能够积极参与到这项活动当中来。
阅读答案辞职我陆游证明贬义词的意见感谢信奖学金答案的褒义词范本赏析造句开学了活动策划对策台词活动方案工作颁奖词营销策划:反思聘书的举报信朗诵,诗经记事加油稿调查报告:赠言章程道德读书。
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式
应用题
审题
题设条件代入数学模型
求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型
实际问题
一次函数
成本、利润、销售收入等
二次函数
优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数
细胞分裂、生物繁殖等
三角函数
测量、交流量、力学问题等
3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
舰艇会和问题
数学建模论文
姓名:
班级:
学号:
舰艇会和问题
摘要:
当舰艇执行完任务会合航母时,需要采取合适的航行方向与航母会和,可以用坐标系解决这类问题。
现代战争中,航空母舰被视为一个国家海军力量的象征,航空母舰战斗群是以大型航母为核心,集海军航空兵、水面舰艇和潜艇为一体,是空中、水面和水下作战力量高度联合的海空一体化机动作战部队,具有灵活机动、综合作战能力强、威慑效果好等特点,可以在远离军事基地的广阔海洋上实施全天候、大范围、高强度的连续作战。但是航空母舰本身的防御力比较弱,所以航空母舰战斗群集合了其他的的舰船来互相配合,航空母舰战斗群一般包括有巡洋舰、驱逐舰、反潜舰、补给舰、潜艇等等。
在实际中航空母舰战斗群往往也会派遣其一些护卫舰来执行其他的一些任务,在任务完成后,护卫舰要及时与航空母舰战斗群集合。
通过计算得出最佳航行方向后既可以节约航行时间、又可以节省燃料。若是作战时刻更可以抢占先机、更能保障作战获胜!
关键词:
舰艇会和、最佳航行方向、坐标系、快速任务、计算简单
正文:
1、问题提出
某航空母舰派其护卫舰搜寻其跳伞的飞行员,护卫舰找到飞行员后、航空母舰告诉其航速和方向,护卫舰应怎样航行才能与航母会和。
2、符号及模型假设
A:航母
θ1:航母航行方向
b:航母的初始位置
B:护卫舰
θ2:舰艇的航行方向
-b:表示舰艇的初始位置
P:表示航母和舰艇的会和位置
V1:航空母舰的速度
V2:护卫舰的速度
3、建立模型
根据题意可建立如下坐标系:
P(x,y)
A(0,b)
X
Y
B(0,-b)
O
护卫舰
θ1
θ24、模型分析与计算
设V2/
V1=a通常a>1
若舰艇要与航母会和由图可知:
即:
化简得:
令
则上式可化简为:
又题意可知:航母和舰艇的航速、航行方向和b的值已知,根据方程即可求出x、y和舰艇航行方向。
有上述方程解得:
x=
y=
=
5、检验
从上述计算方法可以看出,此方法没有考虑过多的环境因素,如风向、风速、额定船速与实际船速的不同、变道等等的问题。因此此方法在运用于实际问题时要结合环境因素换算成速度
由数学方程式可以看出时间和角度全部由护卫舰的速度和两船的距离决定,只要速度和距离是定值那么能够会和就只有一个解。若战斗时快速的反应出角度,那么护卫舰就能准确的与航母战斗群集合,形成完善的战斗力,从而快速抢占先机,保障作战任务的准确快速实施。
6、推广展望
此类模型简单,计算容易,没有太大难度,是会和问题比较常见的解决方法。它的使用范围可以由海上延伸至空中,如,战斗机群的会和,战斗机快速保护轰炸机,歼击机迅速拦截入侵敌机,空对地的快速援助或打击,甚至可以用来自然灾害时快速营救伤员的一个方案。不过因为其他环境因素考虑欠缺只能作为最基础的方案之一且中途不得有障碍物。
此课题可以在加上各种因素后变成一个值得深入探讨的模型,并产生各种可能的方案,且各种方案各有利弊,从而在解决实际问题中更有针对性,比如道路追踪逃犯,快递追货等等